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t. Linear Programming has numerous appli
ations. Re
ently ithas been shown that many real world problems exhibit numeri
al di�-
ulties due to ill-
onditioning.This paper des
ribes Lurupa, a software pa
kage for 
omputing rigorousbounds for the optimal value of a linear program. The pa
kage 
an handlepoint and interval problems. Numeri
al experien
e with the Netlib lplibrary is given.Keywords. linear programming, rigorous error bounds, Netlib lp li-brary, interval arithmeti
1 Introdu
tionIt is well known that the errors introdu
ed by �oating point arithmeti
 a�e
tthe results of numeri
 
omputation. It is also known that the degree of in�uen
edepends on the 
ondition number of the problem to be solved. What is lessknown is the fa
t, that for seemingly simple problems like linear programmingthe 
ondition 
an be very poor even for non arti�
ial, real world problems.In a re
ent paper by Ordóñez and Freund [1℄ the authors show that 71% ofthe linear programs in the Netlib lp library [2℄ exhibit numeri
al di�
ulties dueto ill-
onditioning. This emphasizes the need for veri�
ation tools for these kindsof problems.One approa
h to this is to use rational arithmeti
 to verify the optimalityof the returned solution. This has been done for example by Gärtner [3℄. Hefo
uses on problems where either the number of 
onstraints or variables is small.While this is 
ommon for problems from 
omputational geometry, it is not 
om-mon for linear programming in general. In fa
t only a handful of problems fromthe Netlib approximately satisfy this requirement. For the other problems hismethod, whi
h utilizes an expli
it inverse, is not appli
able. Another variant ofusing rational arithmeti
 was investigated by Dhi�aoui et al [4℄. They imple-mented methods that verify the primal or dual feasibility of a basis index setand an exa
t lp-solver that 
an start at a given basis or from s
rat
h. The startbasis 
an be taken from an approximate solver. This approa
h is appli
able togeneral linear programming problems. A tool whi
h only veri�es the optimalityof an approximate solution was des
ribed by Ko
h [5℄.



2 C. KeilThe drawba
k of using rational arithmeti
, however, is that it is only appli-
able to problems with a rational solution. While this is 
ertainly the 
ase forlinear programming, for semide�nite programming for example it is not. Se
-ond no sensitivity analysis is performed. Computing the exa
t solution does notguarantee that it is meaningful for a physi
al problem.All of the above problems of using rational arithmeti
 
an be addressed withtools using interval arithmeti
. Lurupa is su
h a tool designed to 
ompute rig-orous bounds for the optimal value of a linear program. In 
ontrast to rationalarithmeti
 it allows un
ertainties in the input data. The 
omputational 
omplex-ity is an additional bene�t of the algorithms implemented in Lurupa with respe
tto bran
h�and�bound frameworks for global optimization. The rigorous lowerbound 
an in most 
ases be 
omputed in O(n2) operations where n is the num-ber of variables. This is the same order of 
omplexity whi
h is required to solvesubproblems unveri�ed using hot-start fa
ilities. Hen
e a rigorous bran
h�and�bound algorithm should be slowed down at most by a 
onstant fa
tor. Noti
ethat obtaining the lower bound by a veri�
ation of the Karush�Kuhn�Tu
ker
onditions or the Fritz�John 
onditions (see Kearfott [6℄ and Hansen and Wal-ster [7℄) would require O(n3) operations and slow down the algorithm at leastby a fa
tor of n. A generalization of the ideas to the semide�nite 
ase along withnumeri
al experien
e 
an be found in [8℄.For des
ribing Lurupa we will start with a look at the theory behind the
omputations done in the pa
kage. Then we will investigate the software itself,the ar
hite
ture and typi
al usage. Following is a survey of the numeri
al expe-rien
e with the Netlib lp library. Finally we will take a look at some limitationsand future work.2 TheoryThe algorithms to 
ompute the rigorous bounds for the optimal value that areimplemented in Lurupa are based on the ones developed by Jansson [9℄. Theyare modi�ed with respe
t to the set of variables that are solved for to satisfy the
onstraints. In Jansson's paper two theorems are presented, whi
h are repeatedhere without proof. The idea is to derive bounds for the optimal value from boxesthat are veri�ed to 
ontain feasible points. These boxes are obtained iterativelyby the solution of slightly perturbed linear programs.To investigate the theorems let us look at a linear program of the form
f∗ := min cT x

s.t. Ax ≤ a

Bx = b

x ≤ x ≤ x.

(1)We 
an des
ribe this linear program with the parameter tuple P := (c, A, a, B, b)and the simple bounds x, x. Some or all simple bounds may be in�nite; that is



Lurupa 3
xi = −∞ and xi = ∞ is allowed. The linear program's dual is

f∗ := max aT y + bT z + xT u + xT v

s.t. AT y + BT z + u + v = c

y ≤ 0, u ≥ 0, v ≤ 0.

(2)To deal with un
ertainties in the input data, we 
an substitute the elementsof P with interval parameters leading to interval problems P := (c,A,a,B,b).We do not 
onsider un
ertainties in the simple bounds as these are often exa
tlyknown su
h as the positiveness of variables.Theorem 1 (Lower Bound). Given an interval linear program P and simplebounds x ≤ x. Suppose interval ve
tors y ≤ 0, z satisfy1. for all free xj (i.e., xj = −∞, xj = ∞) and all A ∈ A, B ∈ B there exists
y ∈ y, z ∈ z su
h that

cj − (A:j)
T y − (B:j)

T z = 0holds, and2. for all variables xj bounded on one side only the defe
ts
dj := cj − (A:j)

Ty − (B:j)
T zare nonnegative if the variable is bounded from below and nonpositive if it isbounded from above.Then y, z 
ontain a dual feasible solution y(P ), z(P ) for ea
h P ∈ P, and alower bound for the optimal value 
an be 
omputed as

inf
P∈P

f∗(P ) ≥ f∗ := inf{aT y + bT z +
∑

xj 6=−∞

xjd
+

j +
∑

xj 6=∞

xjd
−
j }. (3)Theorem 2 (Upper Bound). Given an interval linear program P and simplebounds x ≤ x. Suppose interval ve
tor x satis�es

Ax ≤ a, x ≤ x ≤ x,and for all B ∈ B, b ∈ b exists x ∈ x with
Bx = b.Then x 
ontains a primal feasible solution x(P ) for ea
h P ∈ P, and an upperbound for the optimal value 
an be 
omputed as

sup
P∈P

f∗(P ) ≤ f
∗

:= max{cT x}. (4)Moreover, if the obje
tive fun
tion is bounded from below for every linear programwith input data P ∈ P, then ea
h problem has an optimal solution.



4 C. Keil3 SoftwareLurupa was designed with modularity and �exibility in mind. The aim is toprovide a fast implementation of rigorous algorithms for linear programmingproblems. These shall be available as standalone versions and as a library to beintegrated into larger frameworks. The implementation is in ANSI C++.3.1 Ar
hite
tureThe overall ar
hite
ture is depi
ted in Figure 1. The main work is performedby a 
omputational 
ore, whi
h uses the PROFIL/BIAS library [10℄ for therigorous 
omputations. This 
ore is instru
ted either via the 
ommand line 
lientor using the API, that is dire
tly 
alling the methods exposed by the 
ore.To do the approximative 
omputations the 
ore itself a

esses arbitrary linearprogramming solvers via wrapper 
lasses with a 
ommon interfa
e. Beside these
omponents are the 
lasses for reporting and model storing.
Core API

command line client

Report Storage

Solver_module

Sm_lps5_5lp_solve

PROFIL/BIAS

Fig. 1. Ar
hite
tureTaking a tour of the essential parts and starting with the 
omputational
ore, we see in Figure 2 a UML Class diagram of the a
tual worker 
lass Lurupa.The main routines to use the 
ore are set_solver_module, read_lp, solve_lp,lower_bound, and upper_bound. The former two are responsible for setting upthe environment. That is sele
ting a solver module and thus a linear program-ming solver and reading the linear program itself. To represent un
ertainties inthe model, the parameters 
an be in�ated to intervals with a spe
i�ed relativeradius. With solve_lp the solver is instru
ted to 
ompute an approximate so-lution to the problem. The subsequent veri�
ation is performed by the last twomethods, whi
h 
ompute the rigorous lower and upper bound for the optimalvalue. To �ne-tune the 
omputations the remaining methods may be used to
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hange algorithm parameters. For details 
on
erning the role of the parame-ters refer to Jansson [9℄. The reports 
an be 
ustomized via the Report 
lass.Calling set_verbosity adjusts the verbosity level of displayed messages. Thetwo remaining parameters spe
ify whether messages are printed with prependedtime and whether intermediate ve
tors and matri
es are stored to disk for laterexamination.
Lurupa

 set_solver_module(module_path:char *): bool

 read_lp(in:FILE *,relative_interval_radius:double): Lp *

 solve_lp(lp:Lp *,optimal_value:double &): bool

 lower_bound(lp:Lp *,bound:double &,iterations:int &): Bound_status

 upper_bound(lp:Lp *,bound:double &,iterations:int &): Bound_status

 set_alpha(alpha:double)

 get_alpha(): double

 set_eta(eta:double)

 get_eta(): double

 set_inflate(inflate:bool)

 is_inflate(): bool

Report

 set_verbosity(level:short,print_time:bool,write_vm:bool)Fig. 2. CoreLooking 
loser at the solver modules in Figure 3, we �nd the 
ommon in-terfa
e Solver_module with the general methods read_lp, solve_original,solve_primal_perturbed, solve_dual_perturbed, and set_module_options.Reading an lp from a �le is the task of read_lp. An obje
t of the storage 
lassis initialized with the model from the spe
i�ed �le. The lp parameters 
an be in-�ated to intervals and the algorithm parameter eta is adjusted to the model. Themethods to solve the original and primal and dual perturbed models have twoparameters. All three need the model to be solved. Solving the original lp returnsthe optimal value in the parameter optimal_value. The perturbed methods re-quire the perturbation to be applied. With set_module_options solver spe
i�
settings 
an be 
hanged in a 
ommand line argument way.These methods are inherited and implemented by the solver spe
i�
 modules,depi
ted by the exemplary lp_solve [11℄ module Sm_lps5_5. The solver moduleshave to translate the above 
alls to 
orresponding 
alls to the solver. As ea
hsolver stores the model and asso
iated data in a di�erent format they also haveto translate these stru
tures to the representation of Lurupa and keep tra
k ofany additional solver spe
i�
 information. This information 
an be atta
hed toLurupa's model representation.
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<<interface>>

Solver_module

 read_lp(lp:Lp *,in:FILE *,relative_interval_radius:const double,eta:double &)

 solve_original(lp_lurupa:Lp *,optimal_value:double &)

 solve_primal_perturbed(deflation:const Primal_deflation &,lp_lurupa:Lp *)

 solve_dual_perturbed(deflation_c:const VECTOR &,lp_lurupa:Lp *)

 set_module_options(argc:int,argv:char *[],lp_lurupa:Lp *)

Sm_lps5_5Fig. 3. Solver moduleThe �nal missing pie
e is the Lp 
lass for storing the model as seen in Figure 4.It stores the tuple P and x, x, along with meta data like the name of the model,and the number and indi
es of the free variables. Further it stores the informationabout the approximate primal and dual solutions x,y, z. The dual solution issplit into a part 
orresponding to less equal� and equal�
onstraints. Storingsolver spe
i�
 information is shown in the 
ase of lp_solve with the mapping ofless equal� and equal�
onstraint indi
es to overall 
onstraint indi
es, mp_le_
onand mp_eq_
on, respe
tively.3.2 UsageThe usage of Lurupa depends on the a
tual environment and task. One way touse the software is via the 
ommand line 
lient the other dire
tly via the API.Using the software in a stand-alone fashion with the 
ommand line is theeasier part without the need for further programming. The 
ommand line 
lientdisplays some meta data from the model like the name and dire
tion of optimiza-tion, formats the results returned by the 
ore, and adds time ratios and relativea

ura
ies of the bounds. All the options that are available are sele
ted throughthe use of 
ommand line parameters. These are divided into general and solverspe
i�
 parameters.The main general parameters are -lp <path/to/lp>, -lb, and -ub, whi
hspe
ify the lp to be pro
essed and request the lower and upper bound to be
omputed, respe
tively. Summarizing the general parameters are displayed inTable 1.To sele
t a solver module the -sm <path/to/solver module> parameteris used. Further parameters depend on the sele
ted module. They in
lude forexample algorithm settings for the solver and timeout settings. The parametersavailable with the lp_solve module are 
ontained in Table 2.A typi
al 
all with the 
ommand line 
lient islurupa -sm Sm_lps5_5 -lp lp.mps -lb -ub -v3



Lurupa 7-alpha d Set algorithm parameter alpha to d.-
sv <�le> Append the results to the 
sv �le <�le>[.
sv ℄, with the exten-sion being appended if not present.-eta d Set algorithm parameter eta to d.-i d Compute bounds for an interval problem derived from the onespe
i�ed. Change all parameters to intervals with a relativeradius of d.-in�ate Try in�ating the model if a perturbed one seems to be infeasible.-latex <�le> Append the results to the latex table in the �le <�le>[.tex ℄with the extension being appended if not present.-lb Compute the lower bound.-lp <�le> Read the linear program to be pro
essed from <�le>. Must bein a format that 
an be interpreted by the 
hosen solver module.If this swit
h is not present, the model is read from stdin.-sm <�le> Use the solver module <�le> to solve the linear programs.-t Prepend time information to messages.-ub Compute the upper bound.-vn Sele
t verbosity level:-v0 No messages-v1 Errors-v2 Warnings (default)-v3 Brief-v4 Normal-v5 Verbose-v6 Full-write_vm Write intermediate ve
tors and matri
es to disk.Table 1. General 
ommand line parameters
-sm,timeout,<se
> Set solver timeout in se
onds.-sm,vn Set solver verbosity:v0: NEUTRALv1: CRITICALv2: SEVEREv3: IMPORTANT (default)v4: NORMALv5: DETAILEDv6: FULLTable 2. Lp_solve module 
ommand line options
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Lp

 ic: INTERVAL_VECTOR

 IA: INTERVAL_MATRIX

 ia: INTERVAL_VECTOR

 IB: INTERVAL_MATRIX

 ib: INTERVAL_VECTOR

 xl: VECTOR

 xu: VECTOR

 name: char *

 free_variables: int *

 free_variables_size: int

 ix: INTERVAL_VECTOR

 iy: INTERVAL_VECTOR

 iz: INTERVAL_VECTOR

Lp_lps5_5

 mp_le_con: int *

 mp_eq_con: int *Fig. 4. LpThis 
all uses solver module Sm_lps5_5 to pro
esses the model lp.mps. Thelower and upper bound for the optimal value are 
omputed. Verbosity is set tolevel 3, whi
h is 'Brief', algorithm parameters are left at their default values.The integration of Lurupa into larger frameworks is possible using the pa
k-age as a library through the API. While the 
ommand line 
lient adds someoutput there is no further di�eren
e in fun
tionality or available features to the
ommand line 
lient.Lurupa exposes its fun
tionality through the 
ore Lurupa 
lass. Lookingba
k at Figure 2, the example from above would look like Listing 1 when donevia the API. After the 
alls to lower_bound and upper_bound the lower andupper bound are 
ontained in lbound and ubound, respe
tively. The value ofliterations and uiterations indi
ates the number of ne
essary algorithm it-erations.4 Numeri
al Experien
eThe Netlib lp library of numerous problems from pra
ti
al ba
kground is a well�tting 
olle
tion of test problems. Here only an overview of our numeri
al ex-perien
e is given. Detailed results in
luding interval problems 
an be found in[12℄.Ordòñez and Freund [1℄ de�ned a 
ondition number for a linear programbased on the distan
es to the nearest primal infeasible and dual infeasible prob-lem, ρp and ρd, respe
tively. The 
ondition number follows as the s
ale invariant



Lurupa 9Lurupa l;l. set_solver_module ("Sm_lps5_5 ");l.report. set_verbosity (3, false , false);FILE *in = fopen("lp.mps", "r");Lp lp = l.read_lp(in , 0);double optimal , lbound , ubound;int literations , uiterations ;l.solve_lp (lp , optimal );l.lower_bound (lp , lbound , literations );l.upper_bound (lp , ubound , uiterations );Listing 1. API Usagere
ipro
al of the minimal distan
e to infeasibility. The results show that the lowerand upper bound is 
omputed if the distan
e to dual and primal infeasibility,respe
tively, is greater than 0.Table 3 
ontains an overview of the results obtained in [12℄. For 76 out of89 problems a �nite lower bound 
ould be 
omputed. Only 3 of the remainingproblems have a distan
e to dual infeasibility being greater than 0. The othersare dual ill-posed. Examining the upper bound, 35 problems yield a �nite one.From the remaining problems only 2 have a distan
e to primal infeasibility beinggreater than 0. It seems reasonable that bounds for the remaining problems witha distan
e to infeasibility greater than 0 
an be 
omputed by �ne tuning thealgorithms. In 32 
ases both bounds were �nite. For ea
h of these groups thetable 
ontains the median values for the relative a

ura
y
µ(a, b) :=

|a − b|

max{1,
|a+b|

2
}and the required time ratios. The time to solve the problem approximately isdenoted by tf∗ , the times to 
ompute the bounds by tf∗ and tf∗ .The median values of the relative a

ura
y show us approximately 8 
orre
tdigits for all three groups, whi
h is 
lose to optimal when taking into a

ountthe set stopping toleran
e 10−9 of the used lp-solver. While the lower boundis 
heaper than solving the problem itself, the upper bound is more expensive.This 
an be attributed to the equation systems that have to be solved when
omputing the upper bound.5 Limitations and Future WorkAt the moment the interval representation of the linear program is dense dueto PROFIL/BIAS not supporting sparse matrix stru
tures. I am working on animplementation of su
h stru
tures to be available in a future version of PRO-FIL/BIAS.



10 C. Keil 76 �nite lower bounds
med(µ(f∗, f∗)) = 2.183e − 8 med(tf∗/tf∗) = 0.50035 �nite upper bounds
med(µ(f

∗

, f∗)) = 8.034e − 9 med(tf
∗/tf∗) = 5.25032 �nite pairs

med(µ(f
∗

, f∗)) = 5.620e − 8Table 3. Overview of Netlib resultsOf great interest is also the 
onne
tion to the work of Ordóñez and Freund.They show the distan
es to infeasibility to be 
omputable as the minimal ob-je
tive value of a number of linear programs. This makes Lurupa appli
able to
ompute veri�ed distan
es to infeasibility and thus veri�ed 
ondition numbersfor linear programs. Conne
ted is the topi
 of 
erti�
ates for infeasibility andunboundedness, whi
h will be implemented in Lurupa.Ordòñez and Freund also observed that prepro
essing has a 
onsiderable im-pa
t on the 
ondition number of the problem. Fourer and Gay [13℄ showed, how-ever, that prepro
essing 
an 
hange the state of a linear program from feasibleto infeasible and vi
e versa. This suggests investigation of veri�ed prepro
essing.The ideas used in Lurupa for well-posed linear programs 
an be extendedto ill-posed problems. Also a generalization to arbitrary 
onvex optimizationproblems is possible (see Jansson [14℄, [15℄).Referen
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