Lurupa
Rigorous Error Bounds in Linear Programming

Christian Keil

Hamburg University of Technology, Institute for Reliable Computing
c.keil@tu-harburg.de

Abstract. Linear Programming has numerous applications. Recently it
has been shown that many real world problems exhibit numerical diffi-
culties due to ill-conditioning.

This paper describes Lurupa, a software package for computing rigorous
bounds for the optimal value of a linear program. The package can handle
point and interval problems. Numerical experience with the Netlib Ip
library is given.

Keywords. linear programming, rigorous error bounds, Netlib Ip li-
brary, interval arithmetic

1 Introduction

It is well known that the errors introduced by floating point arithmetic affect
the results of numeric computation. It is also known that the degree of influence
depends on the condition number of the problem to be solved. What is less
known is the fact, that for seemingly simple problems like linear programming
the condition can be very poor even for non artificial, real world problems.

In a recent paper by Ordofniez and Freund [1] the authors show that 71% of
the linear programs in the Netlib lp library [2] exhibit numerical difficulties due
to ill-conditioning. This emphasizes the need for verification tools for these kinds
of problems.

One approach to this is to use rational arithmetic to verify the optimality
of the returned solution. This has been done for example by Gértner [3]. He
focuses on problems where either the number of constraints or variables is small.
While this is common for problems from computational geometry, it is not com-
mon for linear programming in general. In fact only a handful of problems from
the Netlib approximately satisfy this requirement. For the other problems his
method, which utilizes an explicit inverse, is not applicable. Another variant of
using rational arithmetic was investigated by Dhiflaoui et al [4]. They imple-
mented methods that verify the primal or dual feasibility of a basis index set
and an exact lp-solver that can start at a given basis or from scratch. The start
basis can be taken from an approximate solver. This approach is applicable to
general linear programming problems. A tool which only verifies the optimality
of an approximate solution was described by Koch [5].

2 C. Keil

The drawback of using rational arithmetic, however, is that it is only appli-
cable to problems with a rational solution. While this is certainly the case for
linear programming, for semidefinite programming for example it is not. Sec-
ond no sensitivity analysis is performed. Computing the exact solution does not
guarantee that it is meaningful for a physical problem.

All of the above problems of using rational arithmetic can be addressed with
tools using interval arithmetic. Lurupa is such a tool designed to compute rig-
orous bounds for the optimal value of a linear program. In contrast to rational
arithmetic it allows uncertainties in the input data. The computational complex-
ity is an additional benefit of the algorithms implemented in Lurupa with respect
to branch—and-bound frameworks for global optimization. The rigorous lower
bound can in most cases be computed in O(n?) operations where n is the num-
ber of variables. This is the same order of complexity which is required to solve
subproblems unverified using hot-start facilities. Hence a rigorous branch—and-
bound algorithm should be slowed down at most by a constant factor. Notice
that obtaining the lower bound by a verification of the Karush-Kuhn—Tucker
conditions or the Fritz—John conditions (see Kearfott [6] and Hansen and Wal-
ster [7]) would require O(n?) operations and slow down the algorithm at least
by a factor of n. A generalization of the ideas to the semidefinite case along with
numerical experience can be found in [§].

For describing Lurupa we will start with a look at the theory behind the
computations done in the package. Then we will investigate the software itself,
the architecture and typical usage. Following is a survey of the numerical expe-
rience with the Netlib Ip library. Finally we will take a look at some limitations
and future work.

2 Theory

The algorithms to compute the rigorous bounds for the optimal value that are
implemented in Lurupa are based on the ones developed by Jansson [9]. They
are modified with respect to the set of variables that are solved for to satisfy the
constraints. In Jansson’s paper two theorems are presented, which are repeated
here without proof. The idea is to derive bounds for the optimal value from boxes
that are verified to contain feasible points. These boxes are obtained iteratively
by the solution of slightly perturbed linear programs.
To investigate the theorems let us look at a linear program of the form

f*i= min 'z
t. Ax <
s r<a (1)
Bx=1»
r<x<T.

We can describe this linear program with the parameter tuple P := (¢, A, a, B, b)
and the simple bounds z,Z. Some or all simple bounds may be infinite; that is

Lurupa 3

xz; = —oo and T; = oo is allowed. The linear program’s dual is
f*i= max a’y+bz+z2Tu+z0
st. ATy+BTz4+u+v=c (2)

y<0,u>0,v<0.

To deal with uncertainties in the input data, we can substitute the elements
of P with interval parameters leading to interval problems P := (c, A, a, B, b).
We do not consider uncertainties in the simple bounds as these are often exactly
known such as the positiveness of variables.

Theorem 1 (Lower Bound). Given an interval linear program P and simple
bounds x < T. Suppose interval vectors y <0, z satisfy

1. for all free zj (i.e., z; = —00,T; = oc) and all A € A, B € B there exists
Yy €y, 2z €z such that

¢ — (Ay) "y = (By)"2=0

holds, and
2. for all variables x; bounded on one side only the defects

dj:=c; — (A;)"y — (By)"z

are nonnegative if the variable is bounded from below and nonpositive if it is
bounded from above.

Then y,z contain a dual feasible solution y(P),z(P) for each P € P, and a
lower bound for the optimal value can be computed as

: * I T T + .4
lf f7(P) > f=inf{aly +bTz+ ; z;d] +_§ 7id). (3)

Theorem 2 (Upper Bound). Given an interval linear program P and simple
bounds x < T. Suppose interval vector x satisfies

Ax<a, z<x<T,
and for all B € B, b € b exists © € x with
Bx =b.

Then x contains a primal feasible solution x(P) for each P € P, and an upper
bound for the optimal value can be computed as

sup f*(P) < :=max{cTx}. (4)
PeP

Moreover, if the objective function is bounded from below for every linear program
with input data P € P, then each problem has an optimal solution.

4 C. Keil

3 Software

Lurupa was designed with modularity and flexibility in mind. The aim is to
provide a fast implementation of rigorous algorithms for linear programming
problems. These shall be available as standalone versions and as a library to be
integrated into larger frameworks. The implementation is in ANSI C++.

3.1 Architecture

The overall architecture is depicted in Figure 1. The main work is performed
by a computational core, which uses the PROFIL/BIAS library [10] for the
rigorous computations. This core is instructed either via the command line client
or using the API, that is directly calling the methods exposed by the core.
To do the approximative computations the core itself accesses arbitrary linear
programming solvers via wrapper classes with a common interface. Beside these
components are the classes for reporting and model storing.

Solver_module

Sm_lps5_5

Ip_solve
Core API

O «<—— command line client

PROFI L/ BI AS

Report | |Storage

Fig. 1. Architecture

Taking a tour of the essential parts and starting with the computational
core, we see in Figure 2 a UML Class diagram of the actual worker class Lurupa.
The main routines to use the core are set_solver_module, read_1p, solve_lp,
lower_bound, and upper_bound. The former two are responsible for setting up
the environment. That is selecting a solver module and thus a linear program-
ming solver and reading the linear program itself. To represent uncertainties in
the model, the parameters can be inflated to intervals with a specified relative
radius. With solve_lp the solver is instructed to compute an approximate so-
lution to the problem. The subsequent verification is performed by the last two
methods, which compute the rigorous lower and upper bound for the optimal
value. To fine-tune the computations the remaining methods may be used to

Lurupa)

change algorithm parameters. For details concerning the role of the parame-
ters refer to Jansson [9]. The reports can be customized via the Report class.
Calling set_verbosity adjusts the verbosity level of displayed messages. The
two remaining parameters specify whether messages are printed with prepended
time and whether intermediate vectors and matrices are stored to disk for later
examination.

Lurupa

set _sol ver _nodul e(modul e_pat h: char *): bool

read_| p(in:FILE *,relative_interval _radius:double): Lp *

sol ve_| p(l p:Lp *, opti mal _val ue: doubl e &): bool

| ower _bound(| p: Lp *, bound: double & iterations:int &: Bound_status
upper _bound(!l p: Lp *, bound: doubl e & iterations:int &: Bound_status
set _al pha(al pha: doubl e)

get _al pha(): double

set _et a(et a: doubl e)

get _eta(): double

set _inflate(inflate: bool)

is_inflate(): bool

\'4

Report

set _verbosity(level:short, print_tinme:bool,wite_vm bool)

Fig. 2. Core

Looking closer at the solver modules in Figure 3, we find the common in-
terface Solver_module with the general methods read_lp, solve_original,
solve_primal_perturbed, solve_dual_perturbed, and set_module_options.
Reading an Ip from a file is the task of read_1p. An object of the storage class
is initialized with the model from the specified file. The Ip parameters can be in-
flated to intervals and the algorithm parameter eta is adjusted to the model. The
methods to solve the original and primal and dual perturbed models have two
parameters. All three need the model to be solved. Solving the original Ip returns
the optimal value in the parameter optimal_value. The perturbed methods re-
quire the perturbation to be applied. With set_module_options solver specific
settings can be changed in a command line argument way.

These methods are inherited and implemented by the solver specific modules,
depicted by the exemplary Ip_solve [11] module Sm_1ps5_5. The solver modules
have to translate the above calls to corresponding calls to the solver. As each
solver stores the model and associated data in a different format they also have
to translate these structures to the representation of Lurupa and keep track of
any additional solver specific information. This information can be attached to
Lurupa’s model representation.

6 C. Keil

<<interface>>

Solver_module

read_|l p(I p:Lp *,in:FILE *,rel ative_i nterval _radius: const doubl e, eta: doubl e &)
sol ve_original (I p_lurupa:Lp *, optimal _val ue: doubl e &)

sol ve_primal _perturbed(deflation:const Primal _deflation & |p_|lurupa:Lp *)

sol ve_dual _perturbed(deflation_c:const VECTOR & | p_l urupa:Lp *)

set _nodul e_options(argc:int,argv:char *[],|p_lurupa:Lp *)

7

Sm_lIps5_5

Fig. 3. Solver module

The final missing piece is the Lp class for storing the model as seen in Figure 4.
It stores the tuple P and z, T, along with meta data like the name of the model,
and the number and indices of the free variables. Further it stores the information
about the approximate primal and dual solutions x,y,z. The dual solution is
split into a part corresponding to less equal- and equal-constraints. Storing
solver specific information is shown in the case of Ip__solve with the mapping of
less equal- and equal-constraint indices to overall constraint indices, mp_le_con
and mp_eq_con, respectively.

3.2 Usage

The usage of Lurupa depends on the actual environment and task. One way to
use the software is via the command line client the other directly via the API.

Using the software in a stand-alone fashion with the command line is the
easier part without the need for further programming. The command line client
displays some meta data from the model like the name and direction of optimiza-
tion, formats the results returned by the core, and adds time ratios and relative
accuracies of the bounds. All the options that are available are selected through
the use of command line parameters. These are divided into general and solver
specific parameters.

The main general parameters are -1p <path/to/lp>, -1b, and -ub, which
specify the Ip to be processed and request the lower and upper bound to be
computed, respectively. Summarizing the general parameters are displayed in
Table 1.

To select a solver module the -sm <path/to/solver module> parameter
is used. Further parameters depend on the selected module. They include for
example algorithm settings for the solver and timeout settings. The parameters
available with the Ip_solve module are contained in Table 2.

A typical call with the command line client is

lurupa -sm Sm_lps5_5 -1p lp.mps -1b -ub -v3

Lurupa

-alpha d Set algorithm parameter alpha to d.
-csv <file>> Append the results to the csv file <file>[.csv|, with the exten-
sion being appended if not present.

-eta d Set algorithm parameter eta to d.

-id Compute bounds for an interval problem derived from the one
specified. Change all parameters to intervals with a relative
radius of d.

-inflate Try inflating the model if a perturbed one seems to be infeasible.

-latex <file> Append the results to the latex table in the file <file>[.tez]
with the extension being appended if not present.
-1b Compute the lower bound.
-lp <file> Read the linear program to be processed from < file>>. Must be
in a format that can be interpreted by the chosen solver module.
If this switch is not present, the model is read from stdin.
-sm <file>> Use the solver module <file>> to solve the linear programs.
-t Prepend time information to messages.
-ub Compute the upper bound.
-vn Select verbosity level:
-v0 No messages
-v1 Errors
-v2 Warnings (default)
-v3 Brief
-v4 Normal
-v5 Verbose
-v6 Full
-write vm Write intermediate vectors and matrices to disk.

Table 1. General command line parameters

-sm,timeout,<sec> Set solver timeout in seconds.
-sm,vn Set solver verbosity:

v0: NEUTRAL

v1l: CRITICAL

v2: SEVERE

v3: IMPORTANT (default)

v4: NORMAL

v5: DETAILED

v6: FULL

Table 2. Lp_solve module command line options

8 C. Keil

Lp
ic: | NTERVAL_VECTOR
I A: | NTERVAL_MATRI X
ia: | NTERVAL_VECTOR
I B: | NTERVAL_MATRI X
ib: | NTERVAL_VECTOR
x| : VECTOR
xu: VECTOR
name: char *
free_variables: int
free_variabl es_size: int
i x: | NTERVAL_VECTOR
iy: | NTERVAL_VECTOR
iz: | NTERVAL_VECTOR

7

Lp_Ips5_5

nmp_l e_con: int *
np_eg_con: int *

*

Fig. 4. Lp

This call uses solver module Sm_1ps5_5 to processes the model 1p.mps. The
lower and upper bound for the optimal value are computed. Verbosity is set to
level 3, which is 'Brief’, algorithm parameters are left at their default values.

The integration of Lurupa into larger frameworks is possible using the pack-
age as a library through the API. While the command line client adds some
output there is no further difference in functionality or available features to the
command line client.

Lurupa exposes its functionality through the core Lurupa class. Looking
back at Figure 2, the example from above would look like Listing 1 when done
via the API. After the calls to lower_bound and upper_bound the lower and
upper bound are contained in lbound and ubound, respectively. The value of
literations and uiterations indicates the number of necessary algorithm it-
erations.

4 Numerical Experience

The Netlib Ip library of numerous problems from practical background is a well
fitting collection of test problems. Here only an overview of our numerical ex-
perience is given. Detailed results including interval problems can be found in
[12].

Ordonez and Freund [1] defined a condition number for a linear program
based on the distances to the nearest primal infeasible and dual infeasible prob-
lem, p, and pg, respectively. The condition number follows as the scale invariant

Lurupa 9

Lurupa 1;
l.set_solver_module ("Sm_1lps5_5");
l.report.set_verbosity (3, false, false);

FILE *in = fopen("lp.mps", "r");
Lp 1p = l.read_lp(in, 0);

double optimal, lbound, ubound;

int literations, uiterations;
l.solve_lp(lp, optimal);
l.lower_bound (lp, lbound, literations);
1.upper_bound (1p, ubound, uiterations);

Listing 1. API Usage

reciprocal of the minimal distance to infeasibility. The results show that the lower
and upper bound is computed if the distance to dual and primal infeasibility,
respectively, is greater than 0.

Table 3 contains an overview of the results obtained in [12]. For 76 out of
89 problems a finite lower bound could be computed. Only 3 of the remaining
problems have a distance to dual infeasibility being greater than 0. The others
are dual ill-posed. Examining the upper bound, 35 problems yield a finite one.
From the remaining problems only 2 have a distance to primal infeasibility being
greater than 0. It seems reasonable that bounds for the remaining problems with
a distance to infeasibility greater than 0 can be computed by fine tuning the
algorithms. In 32 cases both bounds were finite. For each of these groups the
table contains the median values for the relative accuracy

la — b]

wla,b) = ———
(a.) max{l,‘a—;'b‘}

and the required time ratios. The time to solve the problem approximately is
denoted by ¢y, the times to compute the bounds by ¢;- and b

The median values of the relative accuracy show us approximately 8 correct
digits for all three groups, which is close to optimal when taking into account
the set stopping tolerance 10~? of the used lp-solver. While the lower bound
is cheaper than solving the problem itself, the upper bound is more expensive.
This can be attributed to the equation systems that have to be solved when
computing the upper bound.

5 Limitations and Future Work

At the moment the interval representation of the linear program is dense due
to PROFIL/BIAS not supporting sparse matrix structures. I am working on an
implementation of such structures to be available in a future version of PRO-
FIL/BIAS.

10 C. Keil

76 finite lower bounds
med(p(f™, f*)) = 2.183e — 8 med(t s /tp+) = 0.500
35 finite upper bounds
med(u(f", f)) = 8.034e — 9 med(t5+ /tg+) = 5.250
32 finite pairs
med(u(f*,i*)) = 5.620e — 8

Table 3. Overview of Netlib results

Of great interest is also the connection to the work of Ordoénez and Freund.
They show the distances to infeasibility to be computable as the minimal ob-
jective value of a number of linear programs. This makes Lurupa applicable to
compute verified distances to infeasibility and thus verified condition numbers
for linear programs. Connected is the topic of certificates for infeasibility and
unboundedness, which will be implemented in Lurupa.

Ordonez and Freund also observed that preprocessing has a considerable im-
pact on the condition number of the problem. Fourer and Gay [13] showed, how-
ever, that preprocessing can change the state of a linear program from feasible
to infeasible and vice versa. This suggests investigation of verified preprocessing,.

The ideas used in Lurupa for well-posed linear programs can be extended
to ill-posed problems. Also a generalization to arbitrary convex optimization
problems is possible (see Jansson [14], [15]).

References

1. Ordofiez, F., Freund, R.: Computational experience and the explanatory value
of condition measures for linear optimization. SIAM J. Optimization 14 (2003)
307-333

2. Netlib: (Netlib linear programming library) http://wuw.netlib.org/1p.

3. Gértner, B.: Exact arithmetic at low cost — a case study in linear programming.
Computational Geometry 13 (1999) 121-139

4. Dhiflaoui, M., Funke, S., Kwappik, C., Mehlhorn, K., Seel, M., Schémer, E.,
Schulte, R., Weber, D.: Certifying and repairing solutions to large Ips how good
are Ip-solvers? In: SODA. (2003) 255-256

5. Koch, T.: The final netlib-lp results. Technical Report 03-05, Konrad-Zuse-
Zentrum fiir Informationstechnik Berlin, Takustrafe 7, D-14195 Berlin-Dahlem,
Germany (2003)

6. Kearfott, R.: Rigorous Global Search: Continuous Problems. Kluwer Academic
Publisher, Dordrecht (1996)

7. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Second
edition edn. Pure and Applied Mathematics. Dekker (2003)

http://www.netlib.org/lp

10.

11.

12.

13.

14.

15.

Lurupa 11

Jansson, C., Keil, C.: Rigorous Error Bounds for the Optimal Value in Semidef-
inite Programming. (2005) Submitted, and electronically published http://wwu.
optimization-online. org/DB_HTML/2005/01/1047 .html.

Jansson, C.: Rigorous Lower and Upper Bounds in Linear Programming. SIAM
J. Optim. 14 (2004) 914-935

Kniippel, O.: PROFIL/BIAS and extensions, Version 2.0. Technical report, Inst.
f. Informatik III, Technische Universitit Hamburg-Harburg (1998)

Berkelaar, M., Notebaert, P., Eikland, K.: Ip_solve. (World Wide Web) http://
groups . yahoo.com/group/lp_solve.

Keil, C., Jansson, C.: Computational Experience with Rigorous Error Bounds for
the Netlib Linear Programming Library. (2006) To appear in Reliable Computing,
electronically published http://www.optimization-online.org/DB_HTML/2004/
12/1018.html.

Fourer, R., Gay, D.M.: Experience with a primal presolve algorithm. In Hager,
W.W., Hearn, D.W., Pardalos, P.M., eds.: Large Scale Optimization: State of the
Art. Kluwer Academic Publishers Group, Norwell, MA, USA, and Dordrecht, The
Netherlands (1994) 135-154

Jansson, C.: Termination and Verification for Ill-posed Semidefinite Pro-
gramming Problems (2005) http://optimization-online.org/DB_HTML/2005/
06/1150.html.

Jansson, C.: A rigorous lower bound for the optimal value of convex optimization
problems. J. Global Optimization 28 (2004) 121-137

http://www.optimization-online.org/DB_HTML/2005/01/1047.html
http://www.optimization-online.org/DB_HTML/2005/01/1047.html
http://groups.yahoo.com/group/lp_solve
http://groups.yahoo.com/group/lp_solve
http://www.optimization-online.org/DB_HTML/2004/12/1018.html
http://www.optimization-online.org/DB_HTML/2004/12/1018.html
http://optimization-online.org/DB_HTML/2005/06/1150.html
http://optimization-online.org/DB_HTML/2005/06/1150.html

	Lurupa Rigorous Error Bounds in Linear Programming
	Christian Keil

