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Abstract

It seems to be of recurring interest in the literature to give alternative proofs for
the fact that the determinant of a symplectic matrix is one. We state four short and
elementary proofs for symplectic matrices over general fields. Two of them seem
to be new.
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1. Introduction

Let K be a field and n ∈ N := {1, 2, . . . }. A matrix S ∈ K2n×2n is called
J-symplectic if

S T JS = J (1)

for regular and skew-symmetric J ∈ K2n×2n, i.e., JT = −J. If the characteristic
char(K) of the field K is two, i.e., if 1 = −1, then JT = J, and additionally Ji,i = 0
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for all i ∈ {1, . . . , 2n} is assumed in this case. The symplectic (matrix) group1

Sp(J) := Sp(2n,K) := {S ∈ K2n×2n | S T JS = J} (2)

is, up to isomorphism, independent of the particular choice of J.2 In matrix theory
often

J :=
(

0 I
−I 0

)
(3)

is taken as the default, where I := In ∈ K
n×n is the identity matrix of order n.

Clearly, (1) immediately gives

(det S )2 det J = det(S T JS ) = det J

so that det J , 0 implies det S ∈ {−1, 1}. It is one of the basic, well-known facts
on symplectic matrices that

det S = 1 for all S ∈ Sp(2n,K). (4)

Note that this is trivial for char(K) = 2 since then 1 = −1, but for char(K) , 2 it is
not obvious. In text books on classical groups like [1] or [15] this result is mostly
stated as a corollary of another basic fact, namely that the symplectic group is
generated by so-called symplectic transvections, i.e., each S ∈ Sp(2n,K) can be
written as a product

S =

r∏
i=1

Ei (5)

1 The first notion of symplectic groups goes back to Jordan [9] in 1870, where in §VIII, p.171,
he calls these groups ’groupes abélien’, a name which was not yet occupied by commutative
groups at that time. Later, in 1901, Dickson [6], Chapter II, p. 89, called these groups ’abelien
linear groups’. The nowadays used name ’symplectic group’ was invented by Weyl [16] in 1939.
It is a Greek word for the Latin word ’complex’ which was already occupied in mathematics by
the complex numbers, see [11] for more history on symplectic geometry. The name ’symplectic
group’ was later used and made public by Dieudonné [3], [4] and also by van der Waerden in his
famous books on modern algebra.

2For another skew-symmetric J̃ ∈ K2n×2n, with J̃ii = 0 if char(K) = 2, there always exists a
regular matrix A such that J̃ = AT JA with the property that S is J-symplectic, if, and only if,
S̃ := A−1S A is J̃-symplectic. The conjugation by A, i.e., the mapping Sp(J) → Sp(J̃), S 7→
A−1S A is a group isomorphism which does not change determinants, i.e., det S = det(A−1S A) for
all S ∈ Sp(J).
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of transvections Ei ∈ Sp(2n,K), i = 1, ..., r, r ∈ N. A symplectic transvection has
the form

E = Eα,v := I + αvvT J, α ∈ K\{0}, v ∈ K2n\{0}, (6)

where in this formula I = I2n denotes the identity matrix of order 2n. Since
vT Jv = 0,

ET JE := (I − αJvvT )J(I + αvvT J) = J − α2Jv(vT Jv)vT J = J

shows that a symplectic transvection is indeed a symplectic matrix. From Eα,vE−α,v =

I − α2v(vT Jv)vT J = I it follows that E−1
α,v = E−α,v is again a symplectic transvec-

tion. Moreover, (E − I)2 = α2v(vT Jv)vT J = 0 implies that all eigenvalues of E are
one so that det E = 1. Hence, (5) implies det S = 1.

The fact that transvections have determinant 1 can also be derived in an ele-
mentary way as follows. A transvection is a rank-1 update of the identity matrix,
so (

I 0
wT 1

) (
I + uwT u

0 1

) (
I 0
−wT 1

)
=

(
I u
0 1 + wT u

)
shows for u := αv and wT := vT J that det Eα,v = 1 + αvT Jv = 1.

It is not known to the authors who discovered first that symplectic groups are
solely generated by transvections. This became nowadays some kind of common
knowledge.3 An elementary short proof in matrix notation is stated in Section
4. In this context we want to mention the famous papers by Dieudonné [5] and
Callan [2], where moreover the minimum number r of factors in a representation
(5) is determined. These papers are much more involved.

Another standard proof of the determinant property (4) uses the identity Pf(J) =

Pf(S T JS ) = det(S )Pf(J) on Pfaffians and Pf(J) , 0. However, a more direct proof
seems to be of recurring interest, see [10], [7], [12].

We contribute two elementary short proofs in Section 2. To the best of our
knowledge these proofs seem to be new. In Section 3 we give yet another elemen-
tary short proof based on Jordan normal forms. This is in principle known but

3 This knowledge goes back to the very first notion of symplectic groups by Jordan [9]. There,
in Theorem 221, p. 174, Jordan proved for K = GF(p) that the symplectic group is generated by a
little bit different set of generators containing symplectic transvections. Since it can easily be seen
that all these generators have determinant one, Jordan already deduced (4) in a remark on p. 176.
The same result was more or less repeated by Dickson[6], Theorem 114, p. 92, for K = GF(pm),
m ∈ N.
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we are not aware of a short and concise statement in the literature that is valid for
arbitrary fields. Therefore we considered such a proof also as noteworthy.

2. Proof by block determinants

For preparation, the following trivial lemma is proven by elementary linear
algebra.

Lemma 1. Let M ∈ Kn×n.

a) M is equivalent to D := diag(Im, 0n−m), that is, there are regular A, B ∈ Kn×n

such that AMB = D, where Im is the identity matrix of order m := rank(M)
and 0n−m is the zero matrix of order n − m.4

b) There is regular R ∈ Kn×n such that MR is symmetric, i.e., MR = RT MT .

Proof: a) Let P be a permutation matrix such that the first m columns of MP =

[M1,M2], M1 ∈ K
n,m, M2 ∈ K

n,n−m, are linearly independent. The columns of
M1 can be extended to a basis of Kn, i.e., there is a M3 ∈ K

n,n−m such that Q :=

[M1,M3] is regular. Now I = Q−1Q = [Q−1M1,Q−1M3] means Q−1M1 =

(
Im

0

)
so

that M′ := Q−1MP = [Q−1M1,Q−1M2] =

(
Im U
0 V

)
for suitable U ∈ Km,n−m and

V ∈ Kn−m,n−m. Since M and M′ have the same rank, necessarily V = 0 must hold

true. The matrix R :=
(
Im −U
0 In−m

)
is regular and fulfills

Q−1MPR = M′R =

(
Im U
0 0

) (
Im −U
0 In−m

)
=

(
Im 0
0 0

)
.

Thus, assertion a) holds true for A := Q−1 and B := PR.

b) By a) there are regular A and B such that AMB = diag(Im, 0n−m) =: D. The
matrix R := BA−T is regular and MR = A−1AMBA−T = A−1DA−T is symmetric. �

For proving (4), we take J as defined in (3) and S ∈ Sp(2n,K). The partition

S =

(
V W
X Y

)
implies

S T JS =

(
VT XT

WT YT

) (
0 I
−I 0

) (
V W
X Y

)
=

(
VT XT

WT YT

) (
X Y
−V −W

)
= J,

4Note that this is obvious if a singular value decomposition is at hand, such as for K ∈ {R,C}.
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so that

VT X = XT V and WT Y = YT W and YT V −WT X = I. (7)

2.1. Proof I
If V is the zero matrix, then the partition of S and the last equality in (7) imply

det S = (−1)n det W det X = (−1)n det WT X = (−1)n det(−I) = 1.

Henceforth, we may assume that m := rank(V) > 0. By Lemma 1 a) applied
to M := V there are regular matrices A, B ∈ Kn×n such that D := AVB =

diag(Im, 0n−m). The matrices Â := diag(A, A−T ) and B̂ := diag(B, B−T ) are sym-

plectic, and so is Ŝ := ÂS B̂ =

(
D ∗

∗ ∗

)
. Moreover, det Ŝ = det S by det Â = 1 =

det B̂. Thus, w.l.o.g. we may assume that Ŝ = S , i.e., V = D. The first equality in
(7) yields

(XT V)T = XT V =

XT
11 XT

21

XT
12 XT

22

 Im

0

 =

XT
11 0

XT
12 0

 =

X11 X12

0 0

 .
Hence,

XT
11 = X11 and X12 = 0 and X =

(
X11 0
X21 X22

)
. (8)

Since J itself is symplectic, also S T = JS −1J−1 is symplectic so that the same

argument gives W =

(
W11 W12

0 W22

)
. The third equality of (7) supplies

I = YT V −WT X =

YT
11 YT

21

YT
12 YT

22

 Im

0

 − WT
11 0

WT
12 WT

22

 X11 0

X21 X22


wherefore

WT
22X22 = −In−m and YT

11 −WT
11X11 = Im. (9)
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Using the Schur complement, the first equality of (8), and (9) we finally compute:

det S = det


Im 0 W11 W12

0 0 0 W22

X11 0 Y11 Y12

X21 X22 Y21 Y22

 = det


 0 0 W22

0 Y11 Y12

X22 Y21 Y22

 −
 0
X11

X21

 (0 W11 W12

)
= det

 0 0 W22

0 Y11 − X11W11 ∗

X22 ∗ ∗

 = (−1)n−m det

W22 ∗ ∗

0 Y11 − X11W11 ∗

0 0 X22


= (−1)n−m det W22 det(Y11 − X11W11) det X22

= (−1)n−m det(WT
22X22) det(YT

11 −WT
11X11) = (−1)n−m det(−In−m) det Im = 1,

where the fourth equality uses that W22 and X22 are matrices of order n − m. �

2.2. Proof II
Contrary to Proof I the following proof avoids the subdivision of the four

subblocks V,W, X,Y of S by using a trick like in [14]. 5

By Lemma 1 b) applied to M := WT there is a regular matrix R ∈ Kn×n

such that WT R = RT W. We will work in the commutative polynomial ring K[x].

Define Yx := Y + xR ∈ K[x]n×n and S x :=
(
V W
X Yx

)
. Using (7) we obtain YT

x W =

YT W + xRT W = WT Y + xWT R = WT Yx and(
YT

x −WT

0 I

) (
V W
X Yx

)
=

(
YT

x V −WT X YT
x W −WT Yx

X Yx

)
=

(
YT

x V −WT X 0
X Yx

)
.

Therefore, det Yx det S x = det(YT
x V −WT X) det Yx, i.e.,(

det S x − det(YT
x V −WT X)

)
det Yx = 0. (10)

Now, det Yx = det(Y + xR) = det(xI − (−YR−1)) det R is the det R-multiple (and
thus a nonzero-multiple) of the characteristic polynomial of −YR−1. Hence, det Yx

5Silvester [14] proved that a block matrix M =

(
A B
C D

)
∈ K2n×2n, A, B,C,D ∈ Kn×n, has

determinant det M = det(AD − BC) if C and D commute, i.e., if CD = DC. The key idea in
his proof is to substitute D by Dx := D + xI and to use a Schur complement-like formula for
the determinant in the polynomial ring K[x]. Actually this trick was implicitly already done by
Schur [13], p. 216-217, thanks to P. Batra for pointing to this reference.
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is not the zero polynomial, so that (10) implies det S x − det(YT
x V − WT X) = 0.

Thus, the polynomials det S x and det(YT
x V − WT X) are identical. Evaluating at

x = 0 and using the third equality in (7) gives

det S = det(YT V −WT X) = det I = 1. �

3. Proof by Jordan decomposition

The following lemma is an elementary first step in the course of determining
the normal forms of isometries, see [8], ’Hilfssatz’ 8.5, p. 567.6

Lemma 2. Let S ∈ Sp(2n,K), and let p, q ∈ K[x]\{0} be polynomials such that
p∗(x) := xdeg(p) p(x−1) and q are relatively prime to each other in K[x]. Then
vT Jw = 0 for all v ∈ kern(p(S )) and all w ∈ kern(q(S )).

Proof: Set d := deg(p). The assumption gcd(p∗, q) = 1 supplies polynomials
r, s ∈ K[x] such that rp∗ + sq = 1. For v ∈ kern(p(S )) and w ∈ kern(q(S )) we use
S T J = JS −1 to compute:

0 = (p(S )v)T JS dr(S )w = vT p(S T )JS dr(S )w = vT JS d p(S −1)r(S )w

= vT Jp∗(S )r(S )w = vT J(p∗(S )r(S ) + s(S )q(S ))w = vT Jw. �

The third proof of (4) does not need that J has the default form (3).

Rewriting S T JS = J as S −1 = J−1S T J for S ∈ Sp(2n,K) shows that S T is similar
to S −1. Since every quadratic matrix is similar to its transpose, S is similar to
S −1. Hence, in a Jordan decomposition in a decomposition field F of the char-
acteristic polynomial χS (x) = det(xI − S ), each Jordan block for an eigenvalue
α ∈ F\{−1, 1} has a corresponding distinct Jordan block of the same size for the
eigenvalue α−1 , α. Thus, those Jordan blocks for eigenvalues α , ±1 produce a
subdeterminant one.

Clearly the Jordan blocks for the eigenvalue 1 also produce a subdeterminant
one, so that it remains to show that the Jordan blocks for the eigenvalue −1 pro-
duce a subdeterminant one.

6 A complete classification of the normal forms of symplectic (and also orthogonal and unitary)
isometries over arbitrary fields is given in [8], ’Hauptsatz’ 8.9, p. 570. From that classification the
determinant property (4) follows immediately, however, this would mean to use a sledgehammer
to crack a nut.
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Let m ∈ N be the sum of the sizes of all such Jordan blocks, i.e., m is the
algebraic multiplicity of the eigenvalue −1. Then p := (x + 1)m divides χS (x) and
q := χS (x)/p is not divisible by x + 1. Hence, p∗ = p and q are relatively prime
to each other, and Lemma 2 yields that U := kern(p(S )) and V := kern(q(S )) are
J-perpendicular, i.e., uT Jv = 0 for all u ∈ U and v ∈ V . Since U ⊕ V = K2n,
necessarily U is J-regular, meaning that for an arbitrary basis u1, . . . , um of U the
Gramian matrix Ĵ := (uT

i Ju j)16i, j6m is regular. Since Ĵ is skew-symmetric (with
Ĵi,i = 0 for all i if char(K) = 2), m must necessarily be even. Hence, the Jordan
blocks for the eigenvalue −1 produce a subdeterminant (−1)m = 1. Therefore,
det S = 1. �

4. Proof by generating transvections

Finally, as mentioned in the introduction, we give a short and elementary proof
that every S ∈ Sp(2n,K) is a product of symplectic transvections. As noted in the
introduction, symplectic transvections have determinant 1, so that det S = 1 fol-
lows. For the fourth proof it is also not needed that J has the default form (3).

The proof proceeds by induction on m := rank(S − I), where I is the identity
matrix of order 2n in this section. If m = 0, then S = I. As noted in the in-
troduction, the inverse E−1 of a symplectic transvection E is again a symplectic
transvection so that S = I = EE−1 is the product of two symplectic transvections.
Now let m > 0. Then S , I and there is a u ∈ K2n such that v := (S − I)u , 0.
Consider a symplectic transvection E := I + αvvT J, α ∈ K\{0}. If w is fixed by S ,
then it is also fixed by S −1, wherefore

vT Jw = uT S T Jw − uT Jw = uT JS −1w − uT Jw = 0

implies ES w = Ew = w + vT Jw = w. Thus, we conclude that for all u ∈ K2n with
v := (S − I)u , 0 and all α ∈ K\{0} the transvection E := I + αvvT J fulfills

kern(S − I) ⊆ kern(ES − I). (11)

Case 1: There exists u ∈ K2n such that α := uT JS u , 0. In particular this means
that S u , u or equivalently v := (S − I)u , 0. Take E := I + α−1vvT J and use
(S u)T J(S u) = 0 to compute

ES u = S u + α−1vvT JS u = S u − α−1v(uT JS u) = S u − v = u.
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Thus, u is fixed by S ′ := ES but not by S . Using (11) we see that

kern(S − I) ⊕ Ku ⊆ kern(S ′ − I)

so that m′ := rank(S ′ − I) < rank(S − I) = m. By induction S ′ is a product of
symplectic transvections and therefore also S .

Case 2: uT JS u = 0 for all u ∈ K2n. Then JS is skew-symmetric since

0 = (u + v)T JS (u + v) = vT JS u + uT JS v

for all u, v ∈ K2n. Thus, −JS = (JS )T = S T JT = −S T J = −JS −1 shows that
S 2 = I, i.e., S is an involution. Take some u ∈ Kn with v := (S − I)u , 0 and set
E := I +vvT J and S ′ := ES . By (11), m′ := rank(S ′− I) 6 rank(S − I) = m. Since
JS is regular, there is some w ∈ Kn such that β := vT JS w , 0. By assumption
wT JS w = 0, and using S T J = JS −1 = JS and 0 = S 2 − I = (S − I)(S + I) we
deduce

α := wT JS ′w = wT JS w + wT Jv(vT JS w) = βwT Jv = −βvT Jw
= −β(vT J(S + I)w − vT JS w) = −βuT (S T − I)J(S + I)w + β2

= −βuT J(S − I)(S + I)w + β2 = β2 , 0.

Hence, S ′ fulfills the assumption of Case 1 with u := w and we may proceed as
before to find a second symplectic transvection E′ with

m′′ := rank(E′ES ) = rank(E′S ′) < m′ 6 m.

By induction E′ES is a product of transvections, and so is S . �
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