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Abstract. Interval (two-sided} estimates developed by John Wallis in the 17 century can be considered
as an important step towards development of Newton-Leibniz's calculus.

1. Before Wallis

Greek mathematics left many problems unsolved, including the problem of finding
the areas of even such simple geametric figures as a domain bounded by a hyperbola
v=1/x(e.,y=x""1) One of the first breakthroughs came around the year 1000,
when the Arabic mathematician Abu Ali al-Hassan bel al-Hassan ben Haitam, or
shortly al-Hassan (9651038}, known in the West as Alhazen, found the formulas
for the area of a domain bounded by the curve y = x* (in modern terms, S x* dx)
for an arbitrary nonnegative integer k [4], [5}. This discovery enabled Alhazen to
compute the areas and volumes of the curves and surfaces bounded by polynomial
equations y = P(x).

The resulting formulas helped in solving of new important practical problems:
Alhazen used these formulas to solve several practical problems of optics and
astronomy. In the 14-th century, another practical reason appeared for computing
areas: Oresme showed that if a curve represents the magnitude of velocity over time,
then the area under the curve represents the total change in position {[3], p. 224).
This idea has been extensively used by Galileo in the early seventeenth century.

Not all curves can be represented as y = P{x) for a polynomial P. The simplest
of such non-polynomial curves is a circle x> + y> = 1 (in functional terms, y =
v/1 — x2). For the circle, the formula of the area was well known to the Greeks.

How can the circle be naturally embedded in a family of curves? This question
lead John Wallis (1616-1703), a brilliant British theologician, mathematician, and
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linguist, to investigate the family of curves that are defined by 2-parametric equa-
tions x' 7 +y!'7 = 1 (or, in functional terms, y = (1 — /x)?) for arbitrary values of
parameters p and g. When p and g are not integers, computation of the area of this

1
curve (i.e., of the integral [(1 — /x)” dx) conld not be easily done by the existing

G
techniques. Therefore, a new technique had to be invented. This new technique (that
later on led to what we now know as calculus) was discovered by John Wallis.

2. Enter Wallis and His Interval Estimates

In addition to theology™ and linguistics**, Wallis loved ta solve practical problems;
he was very good in solving them. For example, in 1642, when Oliver Cromwell
asked his help in deciphering the captured Royalist secret messages, he gladly took
up the challenge and cracked the royal codes. Some historians believe that this
success was crucial for the victory of the Parliamentary Party ([5], p. 6).

At the time when many mathematicians were more interested in the philo-
sophical aspects of mathematical problems, Wallis was not initially interested in
mathematics. He hardly learned anything of mathematics at school. His interest
to mathematics started in about 1645, when he realized that the mathematical and
physical problems of his time could be approached as if they were nature’s codes
to crack. For him, the natural approach to solving a problem was to lay down the
cases for which, so to say, the code has been already cracked, and to try to guess
the general pattern. With this method in mind, Wallis approached the problem of
computing (in modern terms) the integral f(1 — /x)” dx. He did crack this code,
and by 1655, he published his famous book Arithmetica Infinitorum in which he
described the solution of this and of many other problems (reprinted in [8]}.

How did he do it? The desired integral is always < 1, therefore, to make analysis
easier, Wallis used the reciprocal?

1
fpgy=7———"—.
f(l — xl."p)q dx
0

His idea was to lay down the cases for which the values of f(p, g) was known, and
try to interpolate. (Wallis not only invented the process of interpolation, he even
invented the very word “interpolation”.) For integer p and g, we can get the explicit
formulas from Alhazen’s results [4]:

* Wallis™ discourses on Trinity are quated in the histories of opinions on that subject.
** In 1633, Wallis wrote an English grammar for foreigners [7].
* We will, of course, reformulate Wallis” computations in modern notations (borrowed from [5]),
for the convenience of modern readers. However, the tables are taken directly from Wallis’ text.
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(A good exercise for the readers: without looking into the following text, try to
fill in the remaining elements.)

For integer ¢, elements of the g—th row are described by a known (Alhazen’s)
polynomial of g—th order; we can use these polynomial formulas to fill these
rows. Since the matrix is symmetric (because the curve x/7 +y'/9 = 1 is clearly
symmetric), we can thus fill the elements that correspond to integer p. The result of
this interpolation is:

qgip 0 1/2 1 372 2 512 3

0 1 ] ] 1 ] 1 !
1/2 1 3/2 15/8 105 /48
1 1 372 2 572 3 712 4
3:2 1 5/2 35/8 315:/48
2 1 15/8 3 3578 6 63/8 10
5/2 1 72 63/8 693 /48
3 1 105/48 4 315748 10 693 /48 20

7

Wallis also noticed that for all p and ¢ from this table, f(p,g+ 1) %f(p, q) Kp+
g+ 1)/ (g + 1}, and he guessed that the same formula must be true for all p and q.

As a result, if we know f(1/2,1/2) (he denoted it by ), we can compute

(172,512 =

1/2+5/2

T

f1/2,3/2)=§3/2,1/2)=

1/2+3/2

3/

4
F112,112)= 200,

f(1/2,3/2)=2-;6(}/2,3/2):2

ete. In this manner, we can describe all elements of the table in terms of the unknown
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q'p 0 172 1 372 2 5/2 3
0 1 1 1 t I 1 1

1/2 1 O 3/2 @30 15/8  (8/5).00 10548
1 I 372 2 512 3 7/2 4

342 1 /3.0 5/2 (8/3)-0  35/8 (64715 .13 315/48
2 1 15/8 3 3578 6 63/8 10

5/2 I /5.0 7/2 64/15.0 6378 (128/15.0 693,48
3 1 105748 4 315748 10 693 148 20

Since the value f(1/2, 1/2) corresponds to the circle, its value is well known: it
is 4/ x. From the purely mathematical viewpoint, the problem is completely solved
(the code is cracked). However, Wallis is interested in the practical computational
problem. So, for him, an expression like (4/3) - C = 16/ (3x) is not the ultimate
sohution; there is still a problem of actually computing such values. To solve this
problem, Wallis noticed that when g increases, the value f(1 /2, g) increases (this
fact easily follows from our integral definition of f(p, 1), because the integrated
expression decreases with ¢). Therefore, for every integer n, f(1/2,n—-1/2) <
f(7/2,n) < f(1/2,n+1/72). From the above recursive formula for f, we know
that

35 2a+41
(1/2m) = 1.2-2. .. ,
F112.m) 23 2n
O 2 4 2n

Hence, we can conclude that

o 2 2% "okl O 2k
1 [1

—. <
2 kZle—l bai

< E
2k 2 52k
from which we can deduce that the value 2/ O(= &/ 2) belongs to the following
interval:
" (2k)2 .2 [ " (2k)2 } 2n+2

,E(kal)(zml) “o° g(zk—l)(zml) a4l

The larger 5, the narrower this interval.
From this interval, we can get the intervals for all desired values p and g.

Comment. To avoid a wrong impression, it should be mentioned that this expres-
sion is not very practical, because it is very slowly convergent: e.g., five billion
terms would be necessary to compute z with ten correct digits.

3. Historical Comment: Interval (Two-Sided) Estimates Before Wallis

Wallis’ computation was, of course, not the first two-sided (interval} estimate in
mathematics. There have been many two-sided estimates before, in particular,
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several two-sided estimates for m; some of these estimates use polygons inside and
outside the unit circle to bound =.

Two-sided estimates were known to Archimedes {(7287-212 B.C.E.*) who used
them to estimate areas and volumes (see, e.g., [2], Ch. 8). In particular, he found
two-sided bounds for z by considering regular n—sided polygons inscribed in and
circumscribed around the unit circle. Then, by comparing the perimeters p, and
P, of these polygons with the perimeter 27 of the unit circle, he concluded that
pnl2 < m < Pyi2 Archimedes showed that if we know the perimeters p, and
P, for some n, then we can compute the perimeters for polygons with 2n sides as
Py, = 2py Pyt (py, + Py) and pa, = «/puPs,. Archimedes himself used his formula
to go from hexagons (n = 6 = 2 - 3) for which perimeters were already known,
to polygons with 12 = 222,24 = 3.23 48 = 3.2% and 96 = 3 - 2% sides. By
considering 96-sided polygons, he proved the famous formula

10 10
3 7 <r<3 70
This result appeared as one of the three propositions in his treatise On the Measure-
ment of the Circle, the treatise that during the medieval times, was one of the most
popular of Archimedes’ books. Archimedes did not go further in his computations,
because his formulas involve taking square roots and are, therefore, reasonably
difficult to compute by hand.
Apollonius of Perga (7262-7190 B.C.E.) is said to have calculated the better
bound in a book called Quick Delivery, but this book was lost. Further computations
were made only centuries later:

» In the third century of our era, Liv Hui from China used polygons with 3072 =
3. 219 sides and got six correct decimal digits of x. Liu Hui used a formula
tyet < T < a, + 2 (a,+1 — a,), in which a, denotes the area of an inscribed
regular 3 - 2" —sided polygon, to compute two-sided bounds for m. Lui Hui’s
computations were continued even further by Tsu Ch’ung-chih (430-501), who,
aided by his son Tsu Cheng-chih, got an estimate 3.1415926 < & < 3.1415927.
This two-sided bound for n was the best for nearly a thousand years; it is
therefore fitting that a landmark on the Moon is named after Tsu Ch’ung-chih.

+ After Tsu Ch’ung-chih, the first mathematician to continue Archimedes’ com-
putations was Jamshid ibn Mas’ud al-Kashi (?— =1436) from Ulug Bek’s obser-
vatory. Ulug Bek, a grandson and heir of the great empire-builder Tamerlan
{Timur), was a great patron of science; in his capital city Samarkand (now in
Uzbekistan), Ulugbek built an observatory (it is still a tourist site), and mvited
the best scientists, Al-Kashi included, to its staff. Al-Kashi’s main contribution
to computations was his idea to use decimal fractions instead of sexagesimal
{based on 60) that were then in use. These fractions helped him in long calcu-

* B.C.E. is an abbreviation for Before the Common Era; it means the same as B.C. Similarly, C.E.
1s an abbreviation for Common Era, which means the same as A.D.
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lations, and he computed two-sided bounds for x that gave 16 correct decimal
digits of =

¢ Unaware of al-Kashi's results, another person continued Archimedes’ computa-
tions: Frangois Viete (1540-1603), also known by his Latinized name Franciscus
Vieta. Approximately 100 years before Wallis, he used the 3-2'7-sided polygons
to prove that

3.141,592,653,5 < m < 3.141,592,653,7.

Vigte also gave the first known analytical expression for 7.

2_ v 4t ot o o1 i
r V2 V2 2 Va2 A2 2 \N2"2 V2

Vigte was well known to his contemporaries, but not so much as a mathemati-
cian, but as a... code breaker; he was so good in breaking codes that Spain
officially complained to the Pope that Viéte must be in league with the devil. In
mathematics, he was known for his plea to use decimal rather than sexagesimal
fractions.

¢ Probably the most impressive pre-calculus two-sided bound for « was calculated
by Ludolph van Ceulen (1540-1610). In 1596, he used 15 . 2¥'-sided polygons
to compute n with twenty correct digits; later, he used regular 4 - 2%0-sided
polygons to get two-sided bounds leading to 35 correct digits of . The resulting
value of = was engraved on his tombstone, and even the number x itself was for
some time called the Ludolphine constant.

Other mathermaticians (mainly from India) discovered alternating series for , which
also readily yield two-sided bounds.
¢ The earliest known series were described by Aryabhata (around 500 C.E.).

» Talaculattura, in his Tantra Sangraka (around 1608 C.E.) gave several series for
m, among them the alternating series
1 1 1
;ur=3+4(33 TRt )
So, what was so special about Wallis® bounds? The special was that Wallis’s work
served as an important step towards the development of calculus.

4. After Wallis: Calculus

The most famous reader of Wallis was none else than the young Isaac Newton. In
1661, Newton studied his way through the book, ran several interpolation formulas
of his own, and ended up with the infinite-series binomial formulas that lay the
foundation of Newton’s discovery of modern calculus.*

* It should be mentioned that calculus was independently discovered by Newion and Leibniz.
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Thus, Wallis® work can be viewed as an important step towards development of
calculus.

5. After Calculus: Wallis

And what did Wallis do after Newton’s famous works appeared? He did not do
any more original math. Instead, he used his “code-cracking” skills to solve serious
real-life problems. In particular, he worked for the project of draining the English
fens, i.e., to create the farmland out of salt marshes: he tried (and succeeded) in
finding the patterns in the dynamics of water level.
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