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a b s t r a c t

We investigate how extra-precise accumulation of dot products can be used to solve ill-
conditioned linear systems accurately. For a given p-bit working precision, extra-precise
evaluation of a dot product means that the products and summation are executed in 2p-
bit precision, and that the final result is rounded into the p-bit working precision. Denote
by u = 2−p the relative rounding error unit in a given working precision. We treat two
types of matrices: first up to condition number u−1, and second up to condition number
u−2. For both types of matrices we present two types of methods: first for calculating an
approximate solution, and second for calculating rigorous error bounds for the solution
together with the proof of non-singularity of the matrix of the linear system. In the first
part of this paper we present algorithms using only rounding to nearest, in Part II we use
directed rounding to obtain better results. All algorithms are given in executable Matlab
code and are available from my homepage.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and notation

The solution of a linear system Ax = b is a ubiquitous task in numerical computations. In Part I and II of this paper
we present different methods to compute guaranteed error bounds for the solution of a linear system, i.e. with a certified
accuracy. Themethods in this Part I are based on normestimates, in particular verifying convergence of some residualmatrix
by approximating its Perron vector, whereas the methods in Part II are based on the verification of the H-property of some
matrix. Moreover, in the present Part I of the paper we (1) present a method to compute an approximation for extremely
ill-conditioned linear systems which is likely to be accurate.

In the present Part I all algorithms use only the four basic floating-point operations in rounding to nearest, in Part
II directed rounding is used as well. The challenge for the first part is to use only standard Matlab code in rounding to
nearest without additional mex-files and to derive simple and fast algorithms. All algorithms in both parts are presented in
executable Matlab-code.

Let a floating-point format with relative rounding error unit u be given. The forward error of an approximation x
computed by a standard algorithm like Gaussian elimination is of the order u · cond(A) [1]. This naturally bounds the
applicability to matrices A with cond(A) . u−1, which means cond(A) . 1016 in IEEE 754 double precision (binary64).
For larger condition numbers,x is expected to have no correct digit.

Skeel [2] showed that one step of the classical residual iterationwith the residual computed inworking precision produces
a backward stable result. It is also known that, for condition numbers up to cond(A) . u−1, an almost maximally accurate
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Table 1.1
Constants for single (binary32) and double (binary64)
precision in the IEEE 754 floating-point standard.

p emin emax

Single precision 24 −126 127
Double precision 53 −1022 1023

result (of order u) is achieved if the dot products in the residual iteration are accumulated in twice the working precision
(see also [3]). But for condition numbers of the order u−1 and larger, again no correct digit can be expected. So basically we
face the dichotomy of either high accuracy or no accuracy at all.

We will show that the accumulation of dot products in twice the working precision (with result rounded into working
precision) suffices to compute an accurate approximation of the solution of a linear system for condition numbers up to
cond(A) . u−2. Moreover, we show how rigorous error bounds can be computed including the proof on non-singularity of
the inputmatrixA. Practical experience suggests that this approachworks successfully up to condition numbers c ·cond(A) .
u−2 with c ≈ n2 in IEEE 754 binary64 (double precision). This factor will be improved to about c ≈ n in Part II of this paper.

We want to stress that our bounds are mathematically completely rigorous including all possible sources of errors
(provided the compiler and operating systemwork to their specification). Although it is in principle known how to compute
rigorous error bounds in rounding to nearest, the corresponding algorithms are involved, and taking care of underflow they
become unwieldy. One reason to divide the paper in two parts is to clearly distinguish between algorithms using solely
rounding to nearest (Part I), and those using directed rounding (Part II).

There are other, very good but not completely rigorous approaches. For example, an upper bound of the condition number
cond(A) implies an error bound of an approximate solution of Ax = b. There are many O(n2) condition number estimators
(cf. [4,1]), usually providing good approximations. By the principle of the methods these are lower bounds for the condition
number, and for every estimator counterexamples are known where the condition number is grossly underestimated.

In another approach [5,6] the authors use a statistic way for estimating rounding errors. Using a so-called stochastic
arithmetic they propose a method to determine the number of significant digits of a computed result. Also those results are
correct with a high degree of certainty, but not with complete rigor.

Yet another approach [3] uses the vast experience in solving linear systems very thoughtfully to produce approximations
with ‘‘likely correct error terms’’ [3]. It seems that no counterexample is knownwhere the claimed accuracy is not valid, but
it is not proved to be correct.

To repeat it, beyond accurate approximations for very ill-conditioned linear systems, we are also interested in
mathematically rigorous error bounds. Such rigorous bounds are, for example, mandatory in so-called ‘‘computer-assisted
proofs’’ [7], which recently gain interest. For example, Tucker [8] received the 2004 EMS prize awarded by the European
Mathematical Society for ‘‘giving a rigorous proof that the Lorenz attractor exists for the parameter values provided by
Lorenz. This was a long standing challenge to the dynamical system community, and was included by Smale in his list of
problems for the new millennium. The proof uses computer estimates with rigorous bounds based on higher dimensional
interval arithmetics’’.

Concerning notation denote by F a set of p-bit binary floating-point numbers including ∞ and NaN, i.e. [9]

F = {M · 2e−p+1
| M, e ∈ Z, |M| ≤ 2p

− 1, emin ≤ e ≤ emax} ∪ {−∞, +∞,NaN}. (1.1)

For single (binary32) and double (binary64) precision in the IEEE 754 floating-point standard [10,11] the constants are as in
Table 1.1. We assume floating-point operations in rounding to nearest, tie to even, as in the IEEE 754 standard. That means
there is a mapping fl : R → F such that |fl(x) − x| = minf∈F |f − x| for all x ∈ R, and for a, b ∈ F floating-point operations
◦fl : F × F → F with ◦ ∈ {+, −, ·, /} are defined by

a ◦fl b := fl(a ◦ b). (1.2)

Therefore the result a ◦fl b ∈ F is a best approximation of a ◦ b ∈ R. The relative rounding error unit is defined by u = 2−p.
A floating-point number M · 2e−p+1 is normalized if |M| ≥ 2p−1, the smallest normalized positive floating-point number
is realmin = 2emin , and the smallest unnormalized positive floating-point number is eta = 2emin−p+1. All algorithms are
given in executable Matlab code using IEEE 754 double precision, but the results are valid in any floating-point arithmetic
complying with the IEEE 754 standard.

Comparison between vectors and matrices is always to be understood entrywise, for example x ≤ y for x, y ∈ Rn means
xi ≤ yi for 1 ≤ i ≤ n. Executable Matlab-code is written using the ‘‘verbatim’’-font. For instance, C=A*B means that C
is the result of the floating-point multiplication A*B, where A and B are compatible quantities (scalar, vector, matrix). For
analyzing the error we use ordinary mathematical notation, for example in P = A · B the verbatim-font is used for floating-
point quantities so that P is the exact (real) product of A and B. For A, B ∈ Fn×n this implies |P − C| ∼ u|A| · |B|.
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Table 2.1
Results for n=10; A=hilb(10) and x=A \ b and y=inv(A)*b.

∥Ax̃ − b∥2 ∥Aỹ−b∥2 ∥A−1b−x̃∥2/∥A−1b∥2 ∥A−1b−ỹ∥2/∥A−1b∥2

b = randn(n,1); 2.1 · 10−4 1.7 ·10−3 1.2 · 10−4 1.5 · 10−5

b = A*randn(n,1); 1.2 · 10−16 3.9 ·10−5 5.3 · 10−5 1.4 · 10−4

In principle, it is not difficult to transform an algorithm using directed rounding into an algorithm using only rounding
to nearest [12,13]. However, often the code becomes unwieldy. In this paper we use new estimates on floating-point
summation and dot products [14] to derive particularly simple algorithms to compute verified error bounds using only
rounding to nearest.

The paper is organized as follows. In Section 2 we describe an algorithm for calculating an approximation of the solution
of extremely ill-conditioned linear systems, i.e. up to condition number u−2

≈ 1032 in IEEE 754 double precision. An
algorithm for the necessary extra-precise evaluation of dot products is presented in Section 3. It uses only basic floating-
point operations in rounding to nearest. The following Section 4 splits in five subsections including the computation of
rigorous error bounds in rounding to nearest for ill-conditioned linear systems, for extremely ill-conditioned linear systems
as well as for extra-precise dot product accumulation. This suggests a hybrid algorithm addressing both ill-conditioned and
extremely ill-conditioned systems which will be discussed in Part II of this paper. Computational results and a conclusion
finish the paper.

2. Accurate approximations for very ill-conditioned linear systems

The aim of this section is an algorithm to compute an accurate approximation of a linear system Ax = b with u−1
≤

cond(A) . u−2. Besides the basic floating-point operations {+, −, ·, /} the algorithm requires only the accumulation of dot
products in twice the working precision. For x, y ∈ Fn this is denoted by

res = Dot2Near(x′, y); % accumulation of dot product xTy in twice the working precision. (2.1)

For given p-precision x, y ∈ Fn this means that res ∈ F is the result obtained when calculating the products xiyi in
2p-precision, accumulating the sum


xiyi in 2p-precision and rounding the result of the sum into working precision

(p-precision). Therefore the error of res is bounded by u|res| + cu2

|x|T |y|


for a small constant c , the second term

addressing the accumulation error and the first term the rounding intoworking precision. In [3] this is called ‘‘extra-precise’’
accumulation of dot products. We use similarly

res = Dot2Near(R, b); % accumulation of dot products in R · b in twice the working precision
res = Dot2Near(R, A); % accumulation of dot products in R · A in twice the working precision.

(2.2)

There is a vast amount of literature devoted to the accurate computation of sums and dot products, among them [15–26].
One way to implement Dot2Near using only basic floating-point operations in working precision is XBLAS [27,28]. Here
two IEEE 754 double precision (binary64) floating-point numbers are used to represent a quadruple precision number, and
accurate arithmetical operations on pairs are defined. This does more than necessary for our purposes because the result is
a pair, but for Dot2Near we need only the first part. Another way is to use some multiple-precision package like [29,30].

Since the accurate computation of residuals, possibly with rigorous error bounds, is of central importance for this paper,
we discuss several methods and give executable code in Section 3. For the moment assume an algorithm Dot2Near as
described to be given.

Let A ∈ Fn×n with cond(A) ≥ u−1 be given. Then an approximation x̃ of the solution of a linear system with matrix A
computed by Gaussian elimination in double precision is expected to be heavily corrupted by rounding errors, and no digit
of x̃ can be expected to be correct.

It is well-known [31,32] that ‘‘in the vast majority of practical computational problems, it is unnecessary and inadvisable
to actually compute A−1’’. In particular an approximation ỹ := Rb using some approximate inverse R of A requires not
only three times as much operations than Gaussian elimination, it is also, in general, less accurate and less stable [32].
Nevertheless an approximate inverse is our key to solve such extremely ill-conditioned linear systems.

More precisely, numerical evidence suggests that on the one hand, depending on the right hand side b, the residual
∥Ax̃ − b∥2 forx = A \ b is sometimes much smaller than ∥Aỹ − b∥2 with ỹ = Rb. However, there seems to be on the other
hand, in general, not much difference between ∥A−1b− x̃∥2/∥A−1b∥2 and ∥A−1b− ỹ∥2/∥A−1b∥2. Results for a not untypical
example are given in Table 2.1.

Let R be an approximate inverse computed in working precision (e.g. by the Matlab command R=inv(A)), and assume
cond(A) ≥ u−1. Then R is also expected to be entirely corrupted by rounding errors with no correct digit. Nevertheless
the approximate inverse R contains useful information. This corresponds to the fact that the rounding errors in Gaussian
elimination are by no means random, see [33,34].

In about 1984 I derived an algorithm squeezing out this information. Because of lack of analysis, I did not publish it.
In [35] Oishi et al. analyzed a modification of this algorithm, and in [36] I analyzed the original algorithm. It requires the
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accumulation of dot products in some K -fold precision and storing the result in an unevaluated sum of L floating-point
numbers; otherwise floating-point operations in working precision are used.

For this algorithm it is important to store an approximate inverse in an unevaluated sum ofmatrices R1 +· · ·+Rk, where
the summands are computed recursively starting with the first approximate inverse R. Under reasonable assumptions it
is shown in [36] that with k summands matrices A up to condition number u−k can be treated, i.e. the spectral radius of
I −

k
ν=1 Rν


A becomes less than 1.

The first step of this algorithm is given by the following executable Matlab code. We abbreviate ‘‘accumulation of dot
products in twice the working precision and rounding into working precision’’ by ‘‘extra-precise accumulation’’ in the
comments.

1 R = inv(A); % approximate inverse
2 while any(isinf(R(:))) || any(isnan(R(:)))
3 R = inv(A.*(1+randn(n)*eps)); % inversion of perturbed matrix
4 end
5 C = Dot2Near(R,A); % extra-precise accumulation
6 Cinv = inv(C); % multiplicative correction for R

For A ∈ Fn×n with cond(A) ≥ u−1 it may happen that the ‘‘approximate inverse’’ R computed in the first line contains
infinity- and NaN-components. In that case the matrix A is slightly perturbed and inverted again. Note that mathematically,
due to the large condition number of A, this may change the entries of R in the first digit. In any case, R is completely
corrupted by rounding errors.

Nevertheless it can be observed that

cond(C) ∼ u · cond(A), even for cond(A) ≫ u−2. (2.3)

We cannot expect a mathematically rigorous analysis, but in [36] arguments are given for that. Examples with condition
number up to 10300, just before overflow, confirm this observation.

For cond(A) ∼ βu−1 this means cond(C) ∼ β , so that for β . u−1 we can expect some accuracy in Cinv. The next step
in [36] is to compute Cinv*R in twice the working precision but to store the result in an unevaluated sum R1 + R2. Then it
is shown that I − (R1 + R2)A is convergent for cond(A) . u−2.

One might use the single matrix Dot2Near(Cinv, R) ∈ Fn×n, certainly a good if not best approximation to Cinv*R,
directly as a preconditioner for A. However, for cond(A) > u−1 a single preconditioning matrix B ∈ Fn×n cannot, in
general, force I − BA to be convergent. Even for B being the nearest floating-point matrix to A−1, that is B = A−1

+ ∆

with ∥∆∥ ∼ u∥A−1
∥ for some norm, we have ∥I − B · A∥ = ∥∆ · A∥ ∼ u · cond(A) > 1. Thus the unevaluated sum R1 + R2

rather than Cinv*R is necessary in [36] to serve as a preconditioning matrix.
For computing an accurate approximation of the solution of a linear system, even for cond(A) > u−1, no unevaluated

sum as a preconditioning matrix is necessary. In the following algorithm we use only Dot2Near as specified in (2.2),
i.e. accumulation of dot products in twice the working precision with the result stored in working precision, and only
floating-point operations in rounding to nearest.

Algorithm 2.1. Accurate approximate solution xs of Ax = b for extremely ill-conditioned A.

1 function xs = LssIllcoApprox(A,b)
2 n = size(A,1); % dimension of linear system
3 R = inv(A); % approximate inverse
4 while any(isinf(R(:))) || any(isnan(R(:)))
5 R = inv(A.*(1+randn(n)*eps)); % inversion of perturbed matrix
6 end
7 C = Dot2Near(R,A); % extra-precise accumulation
8 Cinv = inv(C); % multiplicative correction for R
9 xs = Cinv*Dot2Near(R,b); % first approximate solution

10 N = inf; iter = 0; % initialization of constants
11 while iter<5 % at most 5 residual iterations
12 iter = iter+1; Nold = N; % update constants
13 res = Dot2Near([A b],[xs;-1]); % residual A*xs-b (extra-precise acc.)
14 d = Cinv*Dot2Near(R,res); % correction for xs
15 N = norm(d,1); % norm of correction
16 if N<Nold, xs = xs-d; end % correction acceptable
17 if N>=0.1*Nold, break, end % stop iteration if no improvement
18 end
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Fig. 2.1. Results of Algorithm 2.1 (LssIllcoApprox) (left) and of Algorithm 4.20 (LssIllcoErrBndNear) (right) for Pascal matrices with right hand
sides b=randn(n,1) and b=A*randn(n,1). The upper parts show the condition number, the lower parts the relative error of the results.

Observation 2.2. Let F be a set of floating-point numbers with relative rounding error unit u together with floating-point
operations complying with the IEEE 754 arithmetic standard [10,11]. Let xs be the result of Algorithm 2.1 (LssIllcoApprox)
applied to a matrix A ∈ Fn×n with cond(A) . u−2 and to a right hand side b ∈ Fn. Then numerical evidence suggests that the
relative error of xs to the exact solution A−1b is of the order u + u2cond(A).

To start with, we do not fully understand why Algorithm 2.1 works that good for extremely ill-conditioned matrices.
Obviously (RA)−1R = A−1, so that without the presence of rounding errors Cinv · R · b = A−1b. This is the main idea
explored in [36]. Over there, we identified Cinv · R as a suitable preconditioning matrix for A; here we are interested in
solving the linear system and compute Cinv ·


R · b


.

An approximate solution xs is computed in line 9, and in lines 11–18 some residual iteration is applied to it. An
approximate solution d of the residual system is computed in the same way. Since d is the correction to xs, the pair (xs,d)
might be regarded as an unevaluated sum. However, the pair is not proceeded but added (in working precision) into the
new xs in line 16.

The extra-precise accumulation of dot products is used for the preconditioning R ·A in line 7, for the residual A ·xs−b in
line 13, and for themultiplication of a right hand side by R in lines 9 and 14. If one of these dot product operations is replaced
by the usual computation in working precision, the results deteriorate significantly or the algorithm fails completely. One
may be inclined to use Dot2Near for the multiplication by Cinv in lines 9 and 14 as well; however, numerical evidence
suggests that usually this does not improve the results (sometimes to the contrary): only in some extreme situations it is
advantageous.

To this endwe give one typical example for the performance of Algorithm 2.1 (LssIllcoApprox). It is not obvious how
to construct an extremely ill-conditioned matrix with floating-point entries.1 Ways to construct ill-conditioned floating-
point matrices are introduced in [37–39]. Here we use Pascal matrices defined by Aij :=


i+j−2
j−1


. Up to dimension n = 31

the entries are double precision floating-point numbers; for n > 31 the entries are rounded to the nearest floating-point
number. To increase numerical stability we use always equilibrated matrices as in [3], see Section 5.

As can be seen in Fig. 2.1, the condition number (upper line, computed by the symbolic toolbox in Matlab) increases
monotonically up to dimension n = 32, then the matrix entries become corrupted by the conversion into floating-point.
Although the Pascal matrix is not exactly representable for n = 32, the condition number is accidentally larger than for
n = 31.

1 For a discussion of ‘‘well-known suspects’’ of ill-conditioned matrices A and alternative ways to solve Ax = b see the beginning of Section 5.
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The lower lines in the left graph show themedian relative error of the approximation computed by Algorithm 2.1 against
the exact solution computed by the Matlab symbolic toolbox: for given A ∈ Fn×n and b ∈ Fn, the solution x ∈ Qn of the
linear system as a vector of rational numbers is computed and compared to the computed approximation xs ∈ Fn. For two
different right hand sidesb = randn(n,1) (+) andb = A*randn(n,1) (x) themedian relative error ofxs to x is displayed.
The right graph shows the quality of rigorous error bounds computed by Algorithm 4.20 (LssIllcoErrBndNear) and will
be discussed later.

It can be seen that up to conditionnumber 1016 the approximate solution is of full accuracy,whereas for conditionnumber
10k with k > 16 about 32− k digits are correct. This acknowledges Observation 2.2. Extensive numerical tests with various
types of matrices and right hand sides confirm that up to condition numbers of about 1030 the computed approximations
can be expected to have some accuracy, see Section 5.

To this end, we can deduce the accuracy of the computed approximation by knowing the exact solution by some oracle
or by computing it in rational arithmetic. In the next sections we show how mathematically rigorous error bounds can be
computed in floating-point rounding to nearest.

3. Accurate dot products in rounding to nearest

Followingwedescribe an algorithmrealizingDot2Near as used in Section2. AlthoughAlgorithm2.1 (LssIllcoApprox)
needs only an accurate approximation, the following algorithm also computes rigorous error bounds for a dot product. There-
fore it is also suitable for our algorithms computing rigorous error bounds to be discussed in the next section.

The algorithm to be presented requires only the basic floating-point operations +, −, ·, / in working precision and no
additional features such as access to mantissa and/or exponent, assembly language routines or alike, and the algorithm is
also free of branches. This improves, as analyzed by Langlois [40], the computational performance on today’s architectures
significantly.

In [18] Neumaier, as a young student, developed a fast algorithm with provably improved accuracy. It computes an
approximation of a dot product with a quality ‘‘as if’’ computed in twice the working precision. His paper is written in
German and did not receive wide attention. A modern formulation of this algorithm was presented in [41] and is based on
error-free transformations.

We first need an error-free transformation to split a floating-point number into a high and low order part. This is done
by Dekker’s method as in Algorithm 3.1.

Algorithm 3.1. Error-free splitting of a floating-point number a into two parts x, y such that a = x + y.

function [x,y] = Split(a,s)
c = (2^s+1)*a; % splitting in (53-s)-bit and (s-1)-bit part
x = c - (c-a); % high order part
y = a - x; % low order part

As a result, a = x+ y for all a ∈ F, also in the presence of underflow. Moreover, for 53-bit precision input a, the summands
x and y have at most 53− s and s−1 significant bits, respectively. So for s = 27, both summands have at most 26 significant
bits adding to a 53-bit number, an apparent contradiction. This is possible because Dekker’s ingenious and fast algorithm
uses the sign bit as an extra bit of information. Note that Algorithm 3.1 works correctly for vector and matrix input as well,
and possible overflow may be avoided by some scaling.

For completeness we repeat algorithms TwoSum and TwoProduct, error-free transformations of the sum and product of
two floating-point numbers into the nearest floating-point approximation and the true error, respectively.

Algorithm 3.2. Error-free transformation of a + b into x + y.

function [x,y] = TwoSum(a,b)
x = a + b; % floating-point approximation of a+b
z = x - a;
y = ( a - (x-z)) + (b-z); % exact error of x

Algorithm 3.3. Error-free transformation of a · b into x + y.

function [x,y] = TwoProduct(a,b)
x = a * b; % floating-point approximation of a*b
[a1,a2] = Split(a,27); % error-free splitting a = a1+a2
[b1,b2] = Split(b,27); % error-free splitting b = b1+b2
y = a2*b2 - (((x-a1*b1)-a2*b1)-a1*b2); % exact error of x (if no underflow)
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Algorithm 3.2 (TwoSum) is due to Knuth [42], and Algorithm 3.3 (TwoProduct) is due to G.W. Veltkamp (see [43]). The two
algorithms satisfy for all a, b ∈ F the rigorous error estimates [9]

[x, y] = TwoSum(a, b) ⇒ a + b = x + y and
[x, y] = TwoProduct(a, b) ⇒ a · b = x + y + η with |η| ≤ 3eta.

(3.1)

Recall that eta denotes the smallest positive (unnormalized) floating-point number. In IEEE 754 double precision eta =

2−1074, so that the smallest positive normalized floating-point number is realmin =
1
2u

−1eta.
Note that the results of TwoSum always satisfy x + y = a + b, also in the presence of underflow, whereas the results of

TwoProduct satisfy x + y = a · b if no underflow occurs.
The routine TwoSum requires 17 floating-point operations. The new IEEE 754 floating-point standard [11] requires an

FMA (FusedMultiply and Add) operation, which is already available on some processors. It computes a ·b+cwith one final
rounding to nearest. With FMA, TwoProduct can be replaced by

x = a*b;
y = FMA(a,b,-x);

thus requiring only two floating-point operations instead of 17. Based on those routines a summation algorithm was
presented in [41], which is almost identical with Neumaier’s [18]. We formulate it directly for matrix multiplication using
rank-1 updates.

Algorithm 3.4. Approximation of the matrix product A · B ‘‘as if’’ accumulated in twice the working precision and rounded
into working precision with rigorous error term.

function [res,err] = Dot2Near(A,B)
[p,e] = TwoProduct(A(:,1),B(1,:)); % error-free transformation of first product

* E = abs(e); % for error term
k = size(A,2); % inner dimension
for i=2:k % matrix product by rank-1 updates

[h,r] = TwoProduct(A(:,i),B(i,:)); % error-free transformation of i-th product
[p,q] = TwoSum(p,h); % error-free transformation of accumulated sum
t = q + r; % sum of errors
e = e + t; % accumulation of errors

* E = E + abs(t); % accumulation for error term
end
res = p + e; % extra-precise approximation

* epss = 0.5*eps; % relative rounding error unit 2^(-53)
* err0 = max(6*k*epss,1)*realmin + (k+2)*epss*ufp(E) + epss*ufp(res);
* err = err0 + 3*epss*ufp(err0); % rigorous error bound for res

Apparently Neumaier did not know about the error-free transformations TwoSum and TwoProduct. He developed his
algorithm as a sequence of floating-point operations with some reminiscence to the Kahan–Babuška algorithm [44].

Here we added a simplified computation of a rigorous error termwhich we need and explain later. It is based on the new
analysis of floating-point summation in [14]. The error term is computed in the lines marked with an asterisk. If no error
term is needed, all those lines can be omitted.

Theorem 3.5. Let A ∈ Fm×k and B ∈ Fk×n with (k + 2)u ≤ 1 be given, and let res and err be the quantities computed
by Algorithm 3.4 (Dot2Near). Then, also in the presence of underflow,

|A · B − res| ≤ u|A · B| + γ 2
k |A||B| + 5keta, (3.2)

where eta denotes the smallest positive (unnormalized) floating-point number. Moreover,

|A · B − res| ≤ err. (3.3)

The factor k + 2 in the second last line of Algorithm 3.4 cannot be replaced by k + 1.

The first estimate (3.2) follows by the corresponding estimate in [41] for dot products, the correctness of the error bound
(3.3) will be shown in Section 4.2. The first term in the right hand side of (3.2) reflects the unavoidable error of rounding the
final sum res=p+e into working precision, the second term reflects the accuracy of the unevaluated sum p+ e before this
addition, and the third term covers possible underflow. This means that the quality is ‘‘as if’’ computed in twice the working
precision and rounded into working precision as in (2.2).

The number of floating-point operations up to O(1) for Dot2Near is as in Table 3.1. For comparison, the data for
XBLAS [27] are displayed as well.
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Table 3.1
Number of floating-point operations of Dot2Near without and with
error bound, and without and with FMA.

Without FMA With FMA

Dot2Near without error bound 25n 10n
Dot2Near with error bound 27n 12n

DotXBLAS without error bound 37n 22n

4. Rigorous error bounds for linear systems including extremely ill-conditioned matrices with cond(A) . u−2

For a matrix E ∈ Rn×n with ∥E∥ < 1 in some matrix norm it is well-known [4,45] that I ± E is non-singular and
∥(I ± E)−1

∥ ≤ (1−∥E∥)−1. For any given R, A ∈ Rn×n and x̃, b ∈ Rn, ∥I − RA∥ < 1 implies A (and R) to be non-singular and

∥x − A−1b∥∞ = ∥

I − (I − RA)

−1
R(Ax̃ − b)∥∞ ≤

∥R(Ax̃ − b)∥∞

1 − ∥I − RA∥∞

. (4.1)

Moreover, we may use (I − E)−1
= (I − E2)−1(I + E) for E := I − RA to deduce

∥x − A−1b∥∞ ≤
∥(I + E)R(Ax̃ − b)∥∞

1 − ∥I − RA∥2
∞

. (4.2)

If ∥I − RA∥∞ is not close to one, then the accuracy of the bounds is determined by the size of the residual ∥Ax̃ − b∥∞.
The computation of the residual is, of course, subject to heavy cancellation. However, when computed with Algorithm 3.4
(Dot2Near) presented in the previous sectionwemay expect accurate error bounds for themaximumerror of x̃ to the exact
solution A−1b.

Both (4.1) and (4.2) are uniform, normwise error bounds for all entries of the approximationx. If the entries ofx differ
largely in magnitude, it is superior to use the following entrywise error estimate by Yamamoto [46].

Theorem 4.1. Let A, R ∈ Rn×n and b,x ∈ Rn be given. Define E := I − RA and δ := R(Ax − b), and assume ∥E∥∞ < 1. Then A
is non-singular and

|x − A−1b| ≤ |δ| +
∥δ∥∞

1 − ∥E∥∞

· |E|e, (4.3)

where e := (1, . . . , 1)T ∈ Rn.

Proof. For u, v, x ∈ Rn it holds |uTv| ≤ ∥u∥1∥v∥∞, and therefore |Ex| ≤ ∥x∥∞ · |E|e ∈ Rn. Hence (I −E)−1
= I +E(I −E)−1

yields

|x − A−1b| = |(I − E)−1R(Ax − b)| = |(I + E(I − E)−1)δ| ≤ |δ| + ∥(I − E)−1δ∥∞ · |E|e

≤ |δ| +
∥δ∥∞

1 − ∥E∥∞

· |E|e. �

Nextwedescribe how to compute a rigorous upper bound of the right hand side in (4.3) in rounding to nearest. It is applicable
up to condition numbers of about u−1, and it is valid under all circumstances, also in the presence of underflow.

A result in overflow is rounded in IEEE 754 to ±∞, which means for all of the following algorithms that the final result
contains either ∞ or NaN. Therefore wemay safely assume that no intermediate overflow occurs because this is monitored
in the final result.

4.1. Bounds for summation and dot product in rounding to nearest (accumulation in working precision)

Algorithm 3.4 (Dot2Near) estimates the error of a dot product in rounding to nearest. However, often a less accurate
dot product, only accumulated in working precision, is sufficient. Let x, y ∈ Fn be given, and denote bys the result of the
floating-point approximation of xTy computed by a standard for-loop. Then, provided no underflow occurs, the classical
Wilkinson estimate [1] is

|s − xTy| ≤ γn|xT ||y| for nu < 1, (4.4)
where γn := nu/(1 − nu). Since the computation of γn in floating-point causes again rounding errors to be controlled, the
code for rigorous estimates is unwieldy, in particular if underflow is allowed. Moreover, the right hand side is not known.

Fortunately there is a simpleway to avoid the nasty γn terms but to obtain nevertheless rigorous error estimates including
possible underflow. For given A ∈ Fm×k and B ∈ Fk×n consider the following Algorithm 4.2, where realmin is the Matlab
constant denoting the smallest positive normalized floating-point number.2

2 The rounding error unit eps in Matlab is 2u.
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Algorithm 4.2. Rigorous error bound |A · B − res| ≤ err, also in the presence of underflow.

function [res,err] = DotErr(A,B)
res = A*B; % approximation of product
D = abs(A)*abs(B); % product of absolute values
U = ufp(D); % unit in the first place of D
k = size(A,2); % inner dimension
err = (k+2)*(eps/2*U) + 1.5*realmin; % error bound for res

We assume that the products A*B and abs(A)*abs(B) is executed in the same order of evaluation. The algorithm uses
the ‘‘unit in the first place’’ ufp(r) of r ∈ R defined by

ufp(r) := 2⌊log2 |r|⌋, (4.5)

with ufp(0) := 0,whichmay be smaller than |r| by up to a factor of 2. Algorithm3.5 in [22],whichwe repeat for convenience,
computes the unit in the first place in floating-point rounding to nearest without branch.

Algorithm 4.3. Unit in the first place of a floating-point number, vector or matrix.

function res = ufp(x)
q = (1/eps+1)*x; % eps = 2^(-52) in double precision
res = abs(q-(1-eps/2)*q); % unit in the first place of x

A possible overflow in the computation of q may be avoided by some scaling. The algorithmworks for vectors and matrices
as well. Concerning Algorithm 4.2, we proved in [14] the following.

Theorem 4.4. Let A ∈ Fm×k and B ∈ Fk×n with (k + 2)u ≤ 1 be given, and let res and err be the quantities computed
by Algorithm 4.2 (DotErr). Then, also in the presence of underflow,

|A · B − res| ≤ err. (4.6)

The factor k + 2 in Algorithm 4.2 cannot be replaced by k + 1.

The ufp-concept proved to be very useful in verifying the validity of floating-point estimates, and to obtain sharp estimates.
I introduced this concept in [21] to prove the delicate estimations in there. Among the many properties of the unit in the
first place (cf. [21]) we only need the following. For a, b ∈ F and ◦ ∈ {+, −, ·, /}, as in (1.2), fl(a ◦ b) is the result of the
floating-point approximation of a ◦ b. Then the standard estimate of the error of fl(a ◦ b) is improved into

f = fl(a ◦ b) ⇒ f = a ◦ b + δ with |δ| ≤ u · ufp(a ◦ b) ≤ u · ufp(f ) ≤ u|f | (4.7)

for ◦ ∈ {+, −}. If ◦ ∈ {·, /} and a ◦ b is not in the underflow range, then (4.7) is true as well. If ◦ ∈ {·, /} and a ◦ b is in the
underflow range, then |δ| ≤

1
2eta, where eta denotes the smallest positive unnormalized floating-point number. Using

ufp(x) ≤ |x| for x ∈ R this implies, for example,

a ◦ b = (1 + ε1) · fl(a ◦ b) = fl(a ◦ b)/(1 + ε2) with |εν | ≤ u, 1 ≤ ν ≤ 2 (4.8)

if ◦ ∈ {+, −}, or if ◦ ∈ {·, /} and a ◦ b is not in the underflow range.
This means that the error bound (4.6) computed by Algorithm 4.2 (DotErr) is not only rigorous and simple and valid

if underflow occurs, but using the unit in the first place (ufp) it may also be sharper than the classical Wilkinson-estimate
(4.4) by up to a factor 2. For numerical evidence we compared in [14] the error estimate by DotErr and (4.4) for a matrix
product R*A, where A is randomly generated with specified condition number and R=inv(A). For dimensions from 10 to
1000 and condition numbers from 1 to u−1, the value of the bound by DotErr is uniformly about 0.7 times the classical
Wilkinson-estimate (4.4).

For the sum of floating-point numbers rigorous bounds are computed by the following Algorithm 4.5.

Algorithm 4.5. Rigorous error bound
n

i=1 p(i) − res
 ≤ err, also in the presence of underflow.

function [res,err] = SumErr(p)
n = length(p); % number of summands
res = sum(p); % approximation of sum
D = sum(abs(p)); % sum of absolute values
U = ufp(D); % unit in the first place of D
err = (n-1)*(eps/2*U); % error bound for d
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Theorem 4.6 ([14]). Let p ∈ Fn with nu ≤ 1 be given, and let res and err be the quantities computed by Algorithm 4.5
(SumErr). Then, also in the presence of underflow, n

i=1

p(i) − res

 ≤ err. (4.9)

The estimation is sharp for all n ≤ u−1.

Underflow is no problem for summation since a floating-point sum with a result in the underflow range is exact. For later
usage we note that for U as computed in SumErr n

i=1

p(i) − res

 ≤ (n − 1) · u · U (4.10)

is always true, also for n > u−1. If U is in the underflow range, the right hand side can be replaced by zero. Besides, we need
an upper bound for the sum of nonnegative floating-point numbers as computed by the following algorithm.

Algorithm 4.7. Rigorous error bound
n

i=1 p(i) ≤ ubnd, also in the presence of underflow, for nonnegative p ∈ Fn.

function ubnd = SumPosBnd(p)
n = length(p); % number of summands
S = sum(p); % approximation of sum
ubnd = S + (n+1)*(0.5*eps*ufp(S)); % upper bound for sum

Theorem 4.8. Let nonnegative p ∈ Fn with (n + 1)u ≤ 1 be given, and let ubnd be the quantity computed by Algorithm 4.7
(SumPosBnd). Then, also in the presence of underflow,

n
i=1

p(i) ≤ ubnd. (4.11)

Proof. If U := ufp(S) is in the underflow range, then, because the summands are nonnegative, all intermediate sums are in
the underflow range and no error occurs at all. If U is not in the underflow range, then there is no error in the floating-point
computation of delta := (n + 1) ∗ (0.5 ∗ eps ∗ ufp(S)) because U is a power of 2, eps/2 = u and (n + 1)u ≤ 1. Hence
delta = (n + 1) · u · U ≤ U ≤ S and ufp(S + delta) ≤ ufp(2S) = 2ufp(S) = 2U, so that (4.7) implies

ubnd ≥ S + delta − u · ufp(S + delta) ≥ S + (n − 1) · u · U ≥

n
i=1

p(i)

by (4.10) and the nonnegativity of the summands. �

Before we come to the computation of a rigorous upper bound of the right hand side in (4.3) in rounding to nearest, we have
to prove the correctness of the error bound of Algorithm 3.4 (Dot2Near). We need the following auxiliary lemma.

Lemma 4.9. Let a, b ∈ F be given, and let s and sabs be computed by the following Matlab commands:

s = a+b; % floating-point approximation
sigma1 = 1+eps; % successor of 1
sabs = sigma1*abs(s); % upper bound for |a+b|

Then, also in the presence of underflow,

|a + b| ≤ sabs. (4.12)

Proof. If s is in the underflow range, then s = a + b and the result follows. Otherwise |a + b| ≤ |s| + u · ufp(s) <
|s| + 2u · ufp(s) by (4.7). But |s| + 2u · ufp(s) is the successor of s and therefore a floating-point number, so that
|s| + 2u · ufp(s) ≤ (1 + 2u)|s| = sigma1 · |s| and the monotonicity of the rounding proves the result. �

4.2. Correctness of the error bound of Algorithm 3.4 (Dot2Near)

For the proof of correctness of the error term, we need the following error estimation of recursive floating-point
summation. As in (1.2) denote by fl : R → F the rounding such that fl(a ◦ b) ∈ F is nearest to a ◦ b ∈ R for a, b ∈ F
and ◦ ∈ {+, −, ·, /}. This is the definition in the IEEE 754 floating-point standard. For a given vector p ∈ Fn of floating-point
numbers, letsn andSn be computed by the following algorithm:
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Algorithm 4.10. Recursive summation with error estimation.s1 = p1; S1 = |p1|
for k = 2 : n
sk =sk−1 + pk; sk = fl(sk)
Sk =Sk−1 + |pk|; Sk = fl(Sk).

Then (4.7) implies the following rigorous error estimate, also in the presence of underflow:sn −

n
i=1

pi

 ≤ (n − 1)u · ufp(Sn) 
≤ (n − 1)uSn 

. (4.13)

To analyze Algorithm 3.4 (Dot2Near), we first rephrase it to distinguish intermediate results in the loop and to identify the
true and the rounded result of the intermediate operations. It suffices to analyze a single dot product xTy for x, y ∈ Fn with
(n + 2)u ≤ 1. Then, using (3.1), Algorithm 3.4 is equivalent to the following:

p1 +e1 = x1 · y1 + η1; E1 = |e1|
2 ≤ i ≤ n


hi + ri = xi · yi + ηi
pi + qi = pi−1 + hi
ti = qi + ri; ti = fl(ti)
ei =ei−1 +ti; ei = fl(ei)
Ei = Ei−1 + |ti|; Ei = fl(Ei)

ρ = pn +en; res = fl(ρ).

It follows

xTy +

n
i=1

ηi = p1 +e1 +

n
i=2

(hi + ri) = pn +e1 +

n
i=2

(qi + ri)

= pn +e1 +

n
i=2

ti + n
i=2

(ti −ti). (4.14)

Nowen is the floating-point sum ofe1 +
n

i=2
ti andEn is the floating-point sum of the absolute values, so (4.10) givese1 +

n
i=2

ti −en
 ≤ (n − 1)u · ufp(En). (4.15)

Furthermore, |ti −ti| ≤ u|ti|, so again (4.10) and (n + 2)u ≤ 1 imply
n

i=2

|ti −ti| ≤ u ·

n
i=2

|ti| ≤ u ·
En + (n − 2)u · ufp(En) ≤ 3u · ufp(En). (4.16)

Combining (4.14)–(4.16) with (3.1) yields

|xTy − (pn +en)| ≤ 3neta + (n + 2)u · ufp(En). (4.17)

Now |res − (pn +en)| = |fl(pn +en) − (pn +en)| ≤ u · ufp(res) and realmin =
1
2u

−1eta give

|xTy − res| ≤ u · ufp(res) + max(6nu, 1) · realmin + (n + 2)u · ufp(En). (4.18)

Ifres is in the underflow range, then there is no rounding error in the addition pn+en, so that res = pn+en, andu·ufp(res)
in (4.18) can be omitted. IfEn as a sum of nonnegative numbers is in the underflow range, then allti are in the underflow
range, and there is no error in the sums qi + ri. Hence ti =ti for 2 ≤ i ≤ n, the right hand side of (4.16) can be replaced by
zero so that (n + 2)u · ufp(En) in (4.18) can be omitted.

If neither res norEn is in the underflow range, then the floating-point computation of the three summands in (4.18)
does not cause a rounding error, so that in any case only the rounding errors in the two additions in the right hand side of
(4.18) have to be taken care of. Again applying (4.10) to this floating-point sum of three non-negative summands proves3

|xTy − res| ≤ err0 + 2u · ufp(err0) ≤ fl

err0 + 3u · ufp(err0)


= err. (4.19)

This proves the error estimate (3.3) in Theorem 3.5.
The presented algorithms for computing error bounds are suitable for a compiled programming language such as C of

Fortran or a Matlab mex-file; a pure Matlab implementation suffers significantly from interpretation overhead.

3 The Matlab constant eps is 2u, so epss = 0.5 ∗ eps is used in Algorithm 3.4.
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4.3. Rigorous error bounds for linear systems in rounding to nearest (up to cond(A) . u−1)

In the remaining of this subsection we will prove that the quantity err computed by the following Algorithm 4.11
(LssErrBndNear0) is an upper bound of the right hand side in (4.3) in Theorem 4.1 and thus an error bound for
the approximate solution xs. For didactical reasons we first state this preliminary version of the final Algorithm 4.16
(LssErrBndNear).

Algorithm 4.11. Rigorous error bound for the solution of a linear system Ax = b, preliminary version.

function [xs,err] = LssErrBndNear0(A,b)
err = NaN(size(b)); % initialize result
R = inv(A); % approximate inverse of A
xs = ResidIter(A,b,R); % approximate solution
n = size(A,2); % dimension of the linear system
[D,eD] = Dot2Near([A b],[xs;-1]); % error bound D+/-eD for residual
[aRD,eRD] = DotErr(R,D); % error bound aRD+/-eRD of R*D
[aReD,eReD] = DotErr(abs(R),eD); % error bound aReD+/-eReD of |R|*eD
dd = abs(aRD) + eRD + aReD + eReD; % not yet upper bound of |R*(A*xs-b)|
delta = dd + 2.5*(eps*ufp(dd)); % upper bound of |R*(A*xs-b)|
[aRA,eRA] = DotErr(R,A); % bounds for R*A
RA_I = (1+eps)*abs(aRA-eye(n)); % upper bound of |aRA-I|
E = (1+eps)*(RA_I+eRA); % upper bound of |R*A-I|
aE1 = sum(E,2); % approximation of |R*A-I|*ones(n,1)
uE1 = aE1 + (n+1)*(0.5*eps*ufp(aE1)); % upper bound of |R*A-I|*ones(n,1)
Den = (1-max(uE1)) - 1.5*eps; % lower bound of 1-||E||_inf
if Den>0 % algorithm successful

err0 = (max(delta)/Den)*uE1 + realmin; % almost final error bound
err = (1+eps)*(delta+err0); % final error bound

end

The command Dot2Near([A b],[xs;-1]) in line 5 can obviously be replaced by a specialized algorithm Dot2Near
taking into account the special structure. For ease of exhibition we refrain from that in this article.

In all of the following analysiswe use the ‘‘verbatim’’-font for the computed quantities, and all operations in the following
analysis are the exact, real operations. For example, R ·


A ·xs−b


∈ Rn is the true correction of xs ∈ Fn. Note that taking the

maximum and the absolute value of a vector does not cause any rounding error, so we may use max(x) or max(x) without
causing any ambiguousness, and similarly for the absolute value.

For the moment assume that the command xs = ResidIter(A,b,R) in line 3 computes some vector xs ∈ Fn of
floating-point numbers. Of course, a good approximation to A−1b is preferable, but for the proof of correctness of the bound
this is irrelevant. Also assume (n + 2)u ≤ 1. Then (3.3) in Theorem 3.5 implies

|D − (A · xs − b)| ≤ eD, (4.20)

and (4.6) in Theorem 4.4 gives

|aRD − R · D| ≤ eRD and |aReD − |R| · eD| ≤ eReD. (4.21)

Define δ := R ·

A · xs− b


, observe that dd is the sum of four nonnegative summands and that the computation of delta

implements Algorithm 4.7 (SumPosBnd) for those four summands. Hence Theorem 4.8 is applicable and implies

|δ| = |R ·

A · xs − b


| ≤ |R · D| + |R| · eD ≤ |aRD| + eRD + aReD + eReD ≤ delta. (4.22)

Next

|aRA − R · A| ≤ eRA, (4.23)

and Lemma 4.9 implies

|aRA − I| ≤ RA_I and RA_I + eRA ≤ E.

Putting things together yields

|I − R · A| ≤ |I − aRA| + |aRA − R · A| ≤ E. (4.24)

Again using the code in Algorithm 4.7 (SumPosBnd) and Theorem 4.8 gives

|I − R · A| · e ≤ E · e ≤ uE1 and ∥I − R · A∥∞ ≤ max(uE1). (4.25)
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To continue we first split the computation of Den into two parts by the Matlab statements

Den0 = 1 − max(uE1); Den = Den0 − 1.5 ∗ eps;. (4.26)

Note that eps = 2u. If Algorithm 4.11 (LssErrBndNear0) finishes successfully, then 1 ≥ Den0 ≥ Den > 0, so that

∥I − R · A∥∞ ≤ max(uE1) < 1 (4.27)

and Theorem 4.1 is applicable. Abbreviate NE := max(uE1) ≥ ∥I − R · A∥∞ and suppose for the moment NE > 0. Then
ufp(1 − NE) ≤

1
2 and (4.7) give

Den0 ≤ 1 − NE + u · ufp(1 − NE) ≤ 1 − NE +
1
2
u, (4.28)

so that again by (4.7) and eps = 2u

Den ≤ Den0 − 3u + u · ufp(Den0 − 3u) ≤ 1 − NE +
1
2
u − 3u +

1
2
u = 1 − NE − 2u. (4.29)

Consider the Matlab statements

M = max(delta); F1 = M/Den; F2 = F1 ∗ uE1; err0 = F2 + realmin;. (4.30)

Note that (4.22) implies ∥R ·

A · xs − b


∥∞ ≤ M and that the computations of err0 in (4.30) and in Algorithm 4.11

(LssErrBndNear0) are identical. The computation of delta and Algorithm 4.2 (DotErr) imply delta ≥ eRD ≥

realmin, and therefore M/Den ≥ realmin because Den < 1. Hence the quotient F1 is not in the underflow range, and
(4.8) implies

F1 ≥ (1 − u)
M

Den
≥

(1 − u)M
1 − NE − 2u

≥
(1 + u)M
1 − NE

(4.31)

with a little computation for the last inequality. The product F2 may be in the underflow range. If so, then

err0 ≥ realmin ≥ F1 · uE1,

and otherwise by (4.8),

err0 ≥ F2 ≥
F1 · uE1
1 + u

.

In any case (4.31) and (4.25) imply

err0 ≥
F1 · uE1
1 + u

≥
M · uE1
1 − NE

≥
∥δ∥∞

1 − ∥I − R · A∥∞

· |I − R · A| · e. (4.32)

Finally Lemma 4.9, (4.22) and (4.32) yield

err ≥ delta + err0 ≥ |δ| +
∥δ∥∞

1 − ∥I − R · A∥∞

· |I − R · A| · e. (4.33)

This finishes the proof for the case NE > 0. If NE = 0, then NE = max(uE1) ≥ ∥I − R · A∥∞ implies that R = A−1, so that the
right hand side in (4.3) reduces to |δ|. Observing err ≥ |δ| proves the following theorem.

Theorem 4.12. Let a set F of floating-point numbers with relative rounding error unit u together with floating-point operations
complying with the IEEE 754 arithmetic standard [10,11] be given.

Let res and err be the results of Algorithm 4.11 (LssErrBndNear0) applied to a matrix A ∈ Fn×n and a vector b ∈ Fn

with (n + 2)u ≤ 1. If the algorithm ends successfully, then A is non-singular and

|xs − A−1b| ≤ err. (4.34)

It remains to explain xs=ResidIter(A,b,R) in line 3 of Algorithm 4.11 (LssErrBndNear0). The simplest is to perform
just one residual iteration inworking precision to ensure backward stability [2] of the computedxsby theMatlab statements

xs = R ∗ b; xs = xs − R ∗ (A ∗ xs − b); (4.35)

and also to use DotErr([A b],[xs;-1]) rather than Dot2Near([A b],[xs;-1]) two lines later. In that case no
extra-precise dot products are used at all and the quality of the inclusion is of the order u · cond(A). A much better result
and often inclusions of almost maximum accuracy, also for ill-conditionedmatrices, is obtained by a residual iteration using
Dot2Near. The stopping criterion implements numerical experience heuristically.
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Table 4.1
Ratio of measured computing times between Algorithm 4.11 (LssErrBndNear0)
and the Matlab command A \ b. Rigorous inclusions by LssErrBndNear0 are
computed using the Matlab implementation of Algorithm 3.4 (Dot2Near) and a C-
implementation using mex-files.

n = 100 n = 200 n = 500 n = 1000

Matlab Dot2Near 35.8 19.7 11.8 9.2
C-program Dot2Near 3.5 4.3 7.5 7.3

Algorithm 4.13. Improvement of xs by extra-precise residual iteration.

function xs = ResidIter(A,b,R)
xs = R*b; % first approximate solution
normxs = norm(xs,inf); N = inf; % initialization of constants
for iter=1:10 % at most 10 residual iterations

Nold = N; % update constants
d = R*Dot2([A b],[xs;-1]); % correction for xs
N = norm(d,inf); % norm of correction
if N<Nold, xs = xs-d; end % correction acceptable
if ( ( iter==1 ) && ( N<1e-9*normxs ) ) || ( N<eps*normxs ) || ( N>=0.3*Nold )

break % stop iteration if well-conditioned
end % or no improvement

end

As has been mentioned, the implementation of Dot2Near in Matlab suffers severely from interpretation overhead.
Nevertheless the main computational effort in Algorithm 4.11 (LssErrBndNear0) is the computation of the approximate
inverse R = inv(A) and the bounds for the residual I − R ∗ A, the latter requiring two matrix multiplications R ∗ A and
abs(R) ∗ abs(A) in Algorithm 4.2 (DotErr). Therefore the theoretical time ratio between LssErrBndNear0 and the
Gaussian elimination by the Matlab command xs = A \ b is 9.

In practice the ratio is better because matrix multiplication performs usually better than Gaussian elimination. Table 4.1
shows the ratio between the computing times of Algorithm 4.11 (LssErrBndNear0) and the Matlab command xs = A \ b
for different dimensions, the former first with theMatlab implementation of Algorithm 3.4 (Dot2Near), and second using a
C-program and mex-file for Dot2Near.4 The matrix and right hand side are chosen randomly. For ill-conditioned matrices,
wheremore residual iterations are performed, the ratio increases becauseMatlab uses no residual iteration, apparently even
not a single one in working precision.

As can be seen, using the Matlab implementation the ratio decreases because of the decreasing interpretation overhead;
using the C-program there is an increase, possibly due to a (relatively) better performance of theMatlab command A\b and
because the C-program is written straightforwardly without blocking.

Needless to say that Table 4.1 compares apples with oranges because Algorithm 4.11 (LssErrBndNear0) computes
rigorous error bounds which are almost accurate to working precision, whereas the Matlab command A \ b delivers only an
approximation supposedly of quality u · cond(A).

Replacing the computation [aRA,eRA]=DotErr(R,A) of the bounds for R · A by [aRA,eRA]=Dot2Near(R,A)
extends the range of applicability of Algorithm 4.11 (LssErrBndNear0), i.e. error bounds are computed for more ill-
conditioned matrices. Moreover, the quality of the error bound improves for cond(A) . u−1 at the price of increasing
computing time. This will be shown in the next subsection.

4.4. Improved bounds for ill-conditioned linear systems

The successful computation of an error bound by Algorithm 4.11 (LssErrBndNear0) depends on ∥I − RA∥∞ < 1. For
ill-conditioned A, i.e. cond(A) ≈ u−1, it is not uncommon that ∥I − RA∥∞ ≥ 1 for a computed approximate inverse R, but
some diagonal scaling rescues the situation by ∥D−1(I − RA)D∥∞ < 1. Since ∥I − RA∥∞ = ∥ |I − RA| ∥∞, the Perron vector
of |I − RA| is the best choice.5

In Fig. 4.1 the percentage of cases where ∥D−1(I −RA)D∥∞ < 1 but ∥I −RA∥∞ ≥ 1 using D := diag(u) for u denoting the
Perron vector of |I − RA| for different dimensions and condition numbers is displayed. It shows that ∥I − RA∥∞ ≥ 1 begins
to happen for condition numbers roughly starting with u−1/n, thus matching theory, whereas ∥D−1(I − RA)D∥∞ < 1 is still
true for a little larger condition numbers.

4 Many thanks to Prof. Ogita from Tokyo Woman’s Christian University for providing the C- and mex-programs
5 In the rare case that |I − RA| is not irreducible, the Perron vector u of |I − RA| + ϵ for small ϵ > 0 may be used to ensure u > 0, so that D = diag(u) is

non-singular.
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Fig. 4.1. Percentage that ∥D−1(I − RA)D∥∞ < 1 but ∥I − RA∥∞ ≥ 1 using D := diag(u) for u denoting the Perron vector of |I − RA| for dimensions
n = 100 (o), n = 200 (∗), n = 500 (+) and n = 1000 (×) and condition numbers ranging from 1013 to 1015 .

For corresponding improved error bounds consider the following refinement of Theorem 4.1. It approaches the theoret-
ically necessary condition that the spectral radius of |I − RA| is strictly less than one and shows the range of applicability of
our approach.

Theorem 4.14. Let A, R ∈ Rn×n and b,x, u ∈ Rn be given. Assume u > 0, and let D ∈ Rn×n be the diagonal matrix with u on
the diagonal. Define E := I − RA and δ := R(Ax − b), and assume ∥D−1

|E|u∥∞ < 1. Then A is non-singular and

|x − A−1b| ≤ |δ| +
∥D−1δ∥∞

1 − ∥D−1|E|u∥∞

· |E|u. (4.36)

Proof. Define Â := AD, R̂ := D−1R, and x̂ := D−1x. Then
δ̂ := R̂(Âx̂ − b) = D−1δ and Ê := I − R̂Â = D−1ED.

Therefore (4.3) in Theorem 4.1 implies

|x − A−1b| = D|x̂ − Â−1b| ≤ D|δ̂| +
∥δ̂∥∞

1 − ∥Ê∥∞

· D|Ê|e,

so that De = u and ∥Ê∥∞ = ∥|Ê|e∥∞ finishes the proof. �

Next we show how this is used to compute rigorous bounds for linear systems in rounding to nearest. Suppose that some
positive vector u ∈ Fn is given and that the quantities delta and E in Algorithm 4.11 (LssErrBndNear0) have been
computed. Then consider the following Matlab commands.

Dd = delta./u; % approximation of D^-1*delta
uDd = max((1+eps)*Dd) + realmin; % upper bound of ||D^-1*delta||_inf
aEu = E*u; % approximation of |I-RA|u
e = (n+2)*(eps/2*ufp(aEu)) + 1.5*realmin; % bound |I-RA|u <= aEu+e
uEu = (1+eps)*(aEu+e); % upper bound of |I-RA|u
N0 = max(uEu./u); % approximation of ||D^-1|I-RA|u||_inf
N1 = (1+eps)*N0; % not yet bound of ||D^-1|I-RA|u||_inf
N2 = 1 - N1; % approximation of 1-||D^-1|I-RA|u||_inf
Den = N2 - 1.5*eps; % suitable denominator
if Den>0 % algorithm successful

N3 = uDd./Den;
err0 = N3*uEu + realmin; % upper bound of second term
err = (1+eps)*(delta+err0); % final error term

end
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To analyze the code we first need a version of Lemma 4.9 for multiplication and division.

Lemma 4.15. Let a, b ∈ F be given, and let r and rabs be computed by the following Matlab commands:

r = a*b; % floating-point approximation
rabs = (1+eps)*abs(r) + realmin; % upper bound for |a*b|

Then, also in the presence of underflow,

|a · b| ≤ rabs. (4.37)

The statement is also true when replacing multiplication by division in the first line of the Matlab code and in (4.37).

Proof. In case of underflow, |a · b| is bounded by 1
2eta < realmin, and otherwise the result follows as in the proof of

Lemma 4.9 because eps = 2u implies that 1+eps is the successor of 1. �

First note that (4.22) and Lemma 4.15 imply for positive u

∥D−1δ∥∞ = max
i

δi

ui
≤ max

i

delta(i)
u(i)

≤ uDd. (4.38)

Furthermore, (4.24), Theorem 4.4 and Lemma 4.9 imply

|I − R · A| · u ≤ E · u ≤ aEu + e ≤ uEu. (4.39)

Assume for the moment that max(N0) ≠ 0, and that in the Matlab statement N0 = max(uEu./u) no underflow occurs.
Then also N1 ≠ 0, and again using Lemma 4.15 yields

µ := ∥D−1
|I − R · A| · u∥∞ ≤ N1. (4.40)

Assume an error bound is computed, i.e. Den > 0. Then, as in the proof of Theorem 4.12, 1 > N2 > Den > 0 so that
max{ufp(Den), ufp(1 − N1)} ≤

1
2 , eps = 2u, (4.7) and (4.40) show

Den ≤ N2 − 3u + u · ufp(Den) ≤ 1 − N1 + u · ufp(1 − N1) −
5
2
u ≤ 1 − µ − 2u, (4.41)

and uDd ≥ realmin and (4.7) yield

N3 ≥ (1 − u)
uDd
Den

≥ (1 − u)
uDd

1 − µ − 2u
≥ (1 + u) ·

uDd
1 − µ

. (4.42)

If the multiplication N3 ∗ uEu causes underflow, then err0 ≥ realmin ≥ N3 · uEu, and otherwise (4.38)–(4.40) give

err0 ≥
N3 · uEu
1 + u

≥
uDd · uEu
1 − µ

≥
∥D−1δ∥∞

1 − ∥D−1|I − R · A| · u∥∞

· |(I − R · A)| · u. (4.43)

Finally (4.22) and Lemma 4.9 show that err is an upper bound of the right hand side in (4.36). It remains the case
max(N0) = 0 or that in the Matlab statement N0 = max(uEu./u) an underflow occurs. In that case (4.39) implies

µ = ∥D−1
|I − R · A| · u∥∞ = max

i


|I − R · A| · u


i

ui
≤ max

i

uEu(i)
u(i)

< realmin, (4.44)

so that N1 ≤ realmin, N2 = 1 and Den = 1 − 3u. As in (4.42) we conclude

N3 ≥ (1 − u)
uDd
Den

=
1 − u
1 − 3u

· uDd ≥
1 + u

1 − realmin
· uDd > (1 + u)

uDd
1 − µ

, (4.45)

so that the lower bound of N3 as in (4.42) is satisfied and we can continue as before. This proves that the computed vector
err is indeed an upper bound for the right hand side in (4.36).

Both bounds (4.3) in Theorem 4.1 and (4.36) in Theorem 4.14 estimate the componentwise error of |δ|, so the
componentwise minimum of the bounds does as well. The additional effort to compute the bound in (4.36) is few O(n2)
operations. Nevertheless it can be saved if the first bound in (4.3) is already accurate enough, i.e. if the relative error
maxi erri/|xs|i is small enough.

Putting things together, the following Algorithm4.16 (LssErrBndNear) computes an approximation of the solution of a
linear system togetherwith a rigorous error bound. Note thatwe avoid to calculate the second bound based on Theorem4.14
if maxi err0i/|xs|i < 2eps because only err0 can be improved and the offset delta appears also in Theorem 4.1.
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Algorithm 4.16. Approximation xs and rigorous error bound err for the solution of a linear system Ax = b.

function [xs,err] = LssErrBndNear(A,b)
... lines in LssErrBndNear0 before "if Den>0" ...
if Den>0 % algorithm successful

err0 = (max(delta)/Den)*uE1 + realmin; % almost final error bound
err = (1+eps)*(delta+err0); % final error bound
if max(err0./abs(xs))<2*eps, return, end % sufficiently accurate bound

end
for i=1:2

if i==1, u = PerronIter(E); end % Perron vector for E
if i==2, u = delta; end % residual correction
if u>0 % vector u is suitable

uDd = max((1+eps)*(delta./u)) + realmin; % upper bound of ||D^-1*delta||_inf
aEu = E*u; % approximation of |I-RA|u
e = (n+2)*(eps/2*ufp(aEu)) + 1.5*realmin; % bound |I-RA|u <= aEu+e
uEu = (1+eps)*(aEu+e); % upper bound of |I-RA|u
Den = (1-(1+eps)*max(uEu./u))-1.5*eps; % suitable denominator
if Den>0 % choice of u successful

err0 = (uDd./Den)*uEu + realmin; % upper bound of second term
err = min(err,(1+eps)*(delta+err0)); % improved final error bound

end
end

end

The computed error bound is correct for any positive vector u. To achieve accurate error bounds an approximation of the
Perron vector ofE, the upper bound of |I−R·A|, is preferable. To equilibrate the error terms, alsou=delta proved sometimes
to be a good choice. Since the additional effort is small, we use both. An approximation of the Perron vector is computed by
the following algorithm.

Algorithm 4.17. Approximation of the Perron vector of the nonnegative matrix E.

function u = PerronIter(E)
u = ones(size(E,2),1); % first guess (1,...,1)^T
for iter=1:10 % at most 10 iterations

v = E*u; % Perron iteration
rho = v./u; % ratio of iterates
if min(rho)>=1, u=-1; return, end % matrix not convergent
if max(rho)/min(rho)<1.05, break, end % sufficiently accurate
u = v/norm(v,inf) + eps; % update taking care of 0

end

Note that for a nonnegative matrix E ∈ Rn×n and positive vector u ∈ Rn Collatz [47] proved

min
i

(Eu)i
ui

≤ ϱ(E) ≤ max
i

(Eu)i
ui

(4.46)

for ϱ(·) denoting the spectral radius, so that for min(v./u)>=1 the input matrix is not convergent and the iteration is
stopped. Otherwise, adding eps in the second last line ensures that the updated u is positive.

4.5. Rigorous error bounds for extremely ill-conditioned linear systems in rounding to nearest (up to cond(A) . u−2)

The obvious approach to calculate rigorous error bounds for extremely ill-conditioned linear systems is to combine
Algorithm 2.1 (LssIllcoApprox) with an error bound by Theorem 4.1 or 4.14. However, this is not working.

Let a linear systemAx = bwith cond(A) & u−1 be given. It seems reasonable to assume that the distance d := A−1b−xs of
the exact solution A−1b to its nearest floating-point vector xs is of the order6 ∥d∥ ∼ u∥A−1b∥ (indeed there are probabilistic
arguments for that, see [36]). Moreover, for a matrixM ∈ Rn×n and a vector x ∈ Rn which are not correlated we can expect
∥Mx∥ to be of the order n−1/2

∥M∥∥x∥, so that

∥A · xs − b∥ = ∥A · d∥ ∼ ϕ′
· u∥A∥ · ∥A−1b∥ ∼ ϕ · u · cond(A) · ∥b∥ & ϕ · ∥b∥ (4.47)

6 Since matrix norms are equivalent, we do not to specify the norm for the following heuristic arguments.
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for ϕ′, ϕ not too far from 1. Note this is true without the presence of rounding errors in the computation of the residual.
Let R be an approximate inverse of A. Of course, mathematically cond(A) = cond(A−1); however, R is a floating-point
approximation, and rounding into floating-point has some smoothing effect [36], comparable to regularization, so that
cond(R) can be expected to be not much larger than u−1. Hence

delta := ∥R · (A · xs − b)∥ & ϕ · u−1
∥b∥. (4.48)

Note that this is true in general, no matter how accurate R and xs are. The reason is that both R and xs have floating-point
entries and are thus of limited precision. Following Algorithm 2.1 (LssIllcoApprox), delta is multiplied by Cinv, the
approximate inverse of R · A. Under ideal circumstances, cond(Cinv) = 1, but the approaches in Theorems 4.1 or 4.14 are
expected to deliver useless error bounds of the size u−1

∥b∥.
To avoid this we construct an error bound depending directly on R ·b, without using an approximate solution xs. Another

way would be to store xs in two parts as in [3]. However, we wanted to avoid that and to use strictly only (2.1) and (2.2)
beyond ordinary floating-point arithmetic. Consider the following theorem.

Theorem 4.18. Let A, S ∈ Rn×n and b, u ∈ Rn be given. Assume u > 0 and let D ∈ Rn×n be the diagonal matrix with u on the
diagonal. Define E := I − SA and assume ∥D−1

|E|u∥∞ < 1. Then A is non-singular and

|A−1b − S · b| ≤
∥D−1S · b∥∞

1 − ∥D−1|E|u∥∞

· |E|u. (4.49)

For e := (1, . . . , 1)T it follows in particular

|A−1b − S · b| ≤
∥S · b∥∞

1 − ∥E∥∞

· |E|e. (4.50)

Proof. Using (I − E)−1
= D(I − D−1ED)−1D−1 and |Ex| ≤ ∥x∥∞ · |E|e ∈ Rn for x ∈ Rn as in the proof of Theorem 4.1, and

De = u > 0 and ∥E∥∞ = ∥|E|e∥∞ it follows

|A−1b − S · b| = |E(I − E)−1Sb| = |ED · (I − D−1ED)−1D−1Sb|
≤ ∥(I − D−1ED)−1D−1Sb∥∞ · |ED|e

≤
∥D−1S · b∥∞

1 − ∥D−1|E|u∥∞

· |E|u.

Setting u := e finishes the proof. �

Note that there is no restriction on S. Now the trick is, as explained following Observation 2.2, to define S := Cinv · R,
but rather than computing Sb to use Cinv ·


R · b


. This has the appealing advantage to be faster and more accurate than

Cinv · R

· b.

Corresponding error bounds in rounding to nearest based on Theorem 4.18 are not difficult to compute using the results
of the previous subsections. First consider the following algorithm to compute error bounds for the product of twomatrices
where the second factor is afflicted with an error term.

Algorithm 4.19. Rigorous bounds R ± E of matrix products Q ∗ P̃ for P − eP ≤ P̃ ≤ P + eP .

function [R,E] = Prod2Bnd(Q,P,eP)
[R,eR] = DotErr(Q,P); % error bound R+/-eR of Q*P
[aD,eD] = DotErr(abs(Q),eP); % error bound aD+/-eD of |Q|*eP
aE = eR + aD + eD; % not yet upper bound of |R-Q*(P+/-eP)|
E = aE + eps*ufp(aE); % upper bound of |R-Q*(P+/-eP)|

Let Q ∈ Fm×k and P, eP ∈ Fk×n with eP ≥ 0 be given, and assume (n + 2)u ≤ 1. Let P̃ ∈ Rk×n with

P − eP ≤ P̃ ≤ P + eP

be given. Then

|Q · P̃ − Q · P| ≤ |Q| · eP.

The analysis of DotErr in Theorem 4.4 yields

|Q · P − R| ≤ eR and |Q| · eP ≤ aD + eD,

hence

|Q · P̃ − R| ≤ eR + aD + eD.
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Therefore the analysis of SumPosBnd in Theorem 4.8 and eps = 2u prove

|Q · P̃ − R| ≤ E. (4.51)

With these preliminaries we can state the algorithm to compute error bounds for extremely ill-conditioned linear systems
in rounding to nearest.

Algorithm 4.20. Approximation xs and rigorous error bound err for the solution of a linear system Ax = b for extremely
ill-conditioned matrix A.

function [xs,err] = LssIllcoErrBndNear(A,b)
err = NaN(size(b)); % initialize result
n = size(A,2); % dimension of the linear system
R = inv(A); % approximate inverse
while any(isinf(R(:))) || any(isnan(R(:)))

R = inv(A.*(1+randn(n)*eps)); % inversion of perturbed matrix
end
[P,eP] = Dot2Near(R,A); % error bound P+/-eP for R*A
Q = inv(P); % approximate inverse of P
[aSA,eSA] = Prod2Bnd(Q,P,eP); % error bound aSA+/-eSA for Q*(R*A)
[y,ey] = Dot2Near(R,b); % error bound y+/-ey for R*b
[xs,eSb] = Prod2Bnd(Q,y,ey); % error bound xs+/-eSb for Q*(R*b)
delta = (1+eps)*(abs(xs)+eSb); % upper bound of |Q*(R*b)|
SA_I = (1+eps)*abs(aSA-eye(n)); % upper bound of |aSA-I|
E = (1+eps)*(SA_I+eSA); % upper bound of |Q*(R*A)-I|
aE1 = sum(E,2); % approximation of |Q*(R*A)-I|*ones(n,1)
uE1 = aE1 + (n+1)*(0.5*eps*ufp(aE1)); % upper bound of |Q*(R*A)-I|*ones(n,1)
Den = (1-max(uE1)) - 1.5*eps; % lower bound of 1-||E||_inf
if Den>0 % algorithm successful

err = (max(delta)/Den)*uE1 + realmin; % final error bound
if max(err./abs(xs))<2*eps, return, end % bound sufficiently accurate

end
for i=1:2

if i==1, u = PerronIter(E); end % Perron vector for E
if i==2, u = delta; end % residual correction
if u>0 % vector u is suitable

uDd = max((1+eps)*(delta./u)) + realmin; % upper bound of ||D^-1*delta||_inf
aEu = E*u; % approximation of |I-RA|u
e = (n+2)*(eps/2*ufp(aEu)) + 1.5*realmin; % bound |I-RA|u <= aEu+e
uEu = (1+eps)*(aEu+e); % upper bound of |I-RA|u
Den = (1-(1+eps)*max(uEu./u))-1.5*eps; % suitable denominator
if Den>0 % choice of u successful

err = min(err,(uDd./Den)*uEu + realmin); % final error bound
end

end
end

In the first lines the matrices R, P, eP, Q ∈ Fn×n are computed with

|P − R · A| ≤ eP. (4.52)

Otherwise there are no assumptions on A, R or Q. Abbreviate S := Q · R, then (4.51) implies

|S · A − aSA| ≤ eSA. (4.53)

Similarly, |y − R · b| ≤ ey and (4.51) imply

|S · b − xs| ≤ eSb, (4.54)

and Lemma 4.9 yields

|S · b| ≤ delta and therefore ∥S · b∥∞ ≤ max(delta). (4.55)

As in (4.23)ff. in the analysis of Algorithm 4.11 (LssErrBndNear0) it follows

|I − S · A| ≤ E, ∥I − S · A∥∞ ≤ max(uE1) and finally
∥S · b∥∞

1 − ∥E∥∞

· |I − S · A| · e ≤ err (4.56)
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provided Den > 0, so that in this case err is an upper bound of the right hand side in (4.50).7 The remaining of the analysis
is analogous to the proof of correctness of Algorithm 4.16 (LssErrBndNear) in (4.38)ff. with replacing R by S. Both bounds
(4.49) and (4.50) are componentwise upper bounds for the error of S ·b, so the minimum of both is a valid bound as well. As
before we use for u both an approximation of the Perron vector of E as well as delta. If the computation of the first bound
was not successful it is set to NaN, and observing that Matlab ignores NaN’s when computing a minimum, we proved the
following theorem.

Theorem 4.21. Let a set F of floating-point numbers with relative rounding error unit u together with floating-point operations
complying with the IEEE 754 arithmetic standard [10,11] be given.

Let xs and err be the results of Algorithm 4.20 (LssIllcoErrBndNear) applied to a matrix A ∈ Fn×n and a vector b ∈ Fn

with (n + 2)u ≤ 1. If the algorithm ends successfully, then A is non-singular and

|xs − A−1b| ≤ err. (4.57)

Computational evidence suggests that the algorithm ends successfully for condition numbers up to about u−2.

As in Algorithm 2.1 (LssIllcoApprox) the precondition matrix R is replaced by S = Q · R, and as before it is important to
compute S · A and S · b in the order Q · (R · A) and Q · (R · b), respectively. In the latter case this also reduces the computing
time to O(n2) operations.

5. Computational results

Following we report computational results. All algorithms are tested in Matlab version 7.11.0.584 (R2010b) on an Intel
Core i7 CPU M640 with 2.8 GHz, INTLAB version 6 and Windows 7 operating system. INTLAB [48] is the Matlab toolbox for
reliable computing written by the author of this paper. To our knowledge there is no other publicly available Matlab code to
compare with for rigorously solving linear systems using only rounding to nearest. If not stated otherwise, we always use
the 2-norm condition number ∥A−1

∥2∥A∥2.
It is not obvious how to generate matrices with floating-point entries with condition number much larger than u−1. Of

course, one may try the ‘‘usual suspects’’ like Hilbert matrices or the notoriously ill-conditioned Vandermonde matrices.
However, as has been mentioned before, extremely ill-conditioned matrices hardly have a condition number much larger
thanu−1 when rounded into floating-point. The situation is shown in Fig. 5.1, where the condition number (computed by the
symbolic toolbox in Matlab) of the (Matlab) floating-point approximation hilb(n) and the true Hilbert matrix is shown.
This behavior is typical, with some exceptions mentioned below, that the condition number of non-singular floating-point
matrices is roughly bounded by u−1.

7 Note that unlike (4.3) there is no additive term in (4.50).
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Table 5.1
Test matrices of small dimension (equilibrated).

Matrix Matlab command Definition nmax condmax
1≤n≤40

Pascal pascal(n)


i+j−1
j−1


31 6.0 · 1031

Hilbert hilb(n) 1/(i + j − 1) 1 6.3 · 1019

Scaled Hilbert lcm(1, . . . , 2n−1)/(i+ j−1) 21 1.1 · 1028

Inverse Hilbert invhilb(n) Defined by explicit formula 12 4.8 · 1037

Boothroyd


n+i−1
i−1


·n·


n−1
n−j


i+j−1 20 1.1 · 1030

Vandermonde vander(1:n) in−j 14 4.7 · 1061

Larger condition numbers are possible for some of the usual test matrices as long as they are exactly representable in
floating-point.Well-knownexamples are listed in Table 5.1. Someof themare directly available inMatlab. Thematrix entries
like in−j for the Vandermonde matrix are computed in floating-point and coincide with the mathematical definition until
dimension n ≤ nmax. For larger dimensions the entries are corrupted by rounding errors and the matrix does not coincide
with the mathematical definition. Usually this has a smoothing effect so that the condition number does not increase any
more with increasing dimension. The maximum condition number for dimensions 1 ≤ n ≤ 40 is displayed in the last
column of Table 5.1.

Usually it is preferable to equilibrate the input matrix to improve the condition number. This is also done in [3]. To avoid
rounding errors we use the nearest power of 2 to equilibrate the input matrix. This works well except for Vandermonde
matrices which show a very special and in some way strange behavior, see Section 5.4. Henceforth all matrices, also in
Table 5.1, are equilibrated.

Our algorithms are designed to solve general linear systems, not taking advantage of any structure of the matrix. Some
of the test matrices mentioned so far do have a special structure, for example being totally nonnegative. Taking into account
this property, many numerical problems can be solved with high relative accuracy of the result [49–52]. A famous example
is that the smallest singular value of the 100 × 100 Hilbert matrix, which is of size 10−151, can be computed in IEEE 754
double precision to almost full accuracy. This was noted in [53], possibly the starting point for an extensive research on this
topic.

A reason for this unexpected behavior, seemingly contradicting common perturbation analysis, is that it can be shown
that some algorithms applied to such structured matrices perform only certain arithmetic operations, prohibiting in
particular catastrophic cancellation [54].

Although this important research allows to solve a number of very ill-conditioned problems, certain structural properties
of the matrix are mandatory. In particular a number of the ‘‘usual suspects’’ satisfy those properties. However, in contrast
to our algorithms, those methods do not apply to general matrices.

5.1. Results for LssIllcoApprox

We start with some timing comparison. Note that all our algorithms are completely implemented in Matlab, and in
particular the extra-precise accumulation of dot products suffers from interpretation overhead.Matlab offers in the symbolic
toolbox some multi-precision arithmetic (vpa) for approximate calculations, and a rational arithmetic to compute the
exact solution of linear systems. We compare the computing times for Algorithm 2.1 (LssIllcoApprox) (producing
an approximation) with the variable precision arithmetic package (vpa), and Algorithm 4.20 (LssIllcoErrBndNear)
(producing a rigorous error bound) with the precise result of the solution of the linear system Ax = b computed by
sym(A,’f’) \ sym(b,’f’).8

As can be seen in Table 5.2 our algorithms are faster than the competitors from the symbolic toolbox. We note, however,
that the comparison is not fair because sym(A,’f’) \ sym(b,’f’) computes the exact, rational solution whenever the
input matrix in non-singular, whereas LssIllcoErrBnd computes only error bounds and may fail. Apparently using
the symbolic toolbox seems the only possibility in Matlab to compute rigorous results for extremely ill-conditioned
matrices. Note that LssIllcoApprox improves the initial approximation by an extra-precise residual iteration whereas
LssIllcoErrBndNear does not. This explains why for smaller dimension the former algorithm is slower than the latter.

Concerning the accuracy of the results, the right graph in Fig. 2.1 shows already the performance of Algorithm 2.1
(LssIllcoApprox) for Pascalmatrices for right hand sides b=randn(n,1) and b=A*randn(n,1). Recall that theMatlab
function rand generates pseudo-random values drawn from a uniform distribution on the unit interval, whereas randn
produces pseudo-random values drawn from a normal distribution with mean zero and standard deviation one. As can be
seen, the accuracy of the bounds decreases with increasing condition number. For all examples with maximum condition
number up to 6.0 · 1031, on the median at least 3 to 4 digits of the solution are correct.

For this and all of the following examples for Algorithm LssIllcoApprox the number of residual iterations is mostly
1 or 2, in very few cases 3 iterations, but never more.

8 The extra parameter ’f’ ensures that the input A and b is converted into long format without error, respectively.
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Table 5.2
Absolute and relative computing time in seconds for Algorithm 2.1 (LssIllcoApprox), the
variable precision arithmetic package (vpa), Algorithm 4.20 (LssIllcoErrBndNear) and
sym(A,’f’) \ sym(b,’f’). Based on an algorithm given in [37], matrices of condition number
1025 are generated in INTLAB [48] by randmat(n,1e25) with random right hand side.

Dimension Absolute computing time [s] Relative computing time
Algorithm2.1 Vpa Algorithm4.20 Sym Vpa/Approx Sym/ErrBnd

10 0.010 0.031 0.0040 0.039 3.2 9.7
20 0.019 0.089 0.0073 0.12 4.6 16.6
50 0.051 0.38 0.019 0.71 7.6 36.4

100 0.13 1.73 0.063 7.49 13.2 117.7
200 0.39 10.3 0.28 105.8 26.6 375.2
500 8.8 149.1 8.6 4140 16.9 479.1
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Fig. 5.2. Accuracy of Algorithm 2.1 (LssIllcoApprox) for Hilbert and scaled Hilbert matrices as defined in Table 5.1. The upper parts show the condition
number, the lower parts the relative error of the results.

Next we use A = hilb(n) as defined in Matlab with entries approximating 1/(i+ j− 1), and second the scaled Hilbert
matrix with entries lcm(1, . . . , 2n−1)/(i+ j−1). Up to dimension n = 21 the entries are an integermultiple of the original
Hilbert matrix, for n > 21 the entries are corrupted by rounding errors. Therefore, the scaled Hilbert matrices achievemuch
larger condition numbers, as the original Hilbert matrix, than hilb(n), see Fig. 5.1. In Fig. 5.2 the median relative error
of Algorithm 2.1 for the right hand sides b=randn(n,1) and b=A*randn(n,1) are printed in one graph each. Again the
accuracy of the result is inverse proportional to the condition number.

In the left of Fig. 5.3we show the same results of Algorithm2.1 (LssIllcoApprox) forA = invhilb(n), the approxim-
ation of the inverse Hilbert matrix for right hand sides b=randn(n,1) and b=A*randn(n,1). Now the relative error
is constantly less than 10−14 although the condition number rises to almost 1040. A similar behavior is observed for
Vandermonde matrices and will be discussed in Section 5.4.

As has been mentioned, in lines 9 and 14 in Algorithm 2.1 one might use extra-precise dot products by Dot2Near in
the multiplication of the residual by Cinv. The results for matrices proposed by Boothroyd [55] with integer entries, where
a checkerboard sign distribution produces its inverse, are displayed in the right of Fig. 5.3. The results for right hand side
b=randn(n,1) are displayed; the results for b=A*randn(n,1) are completely similar.

As can be seen there is not too much difference whether Dot2Near is used in lines 9 and 14 or not, and for other
matrices and other right hand sides a similar behavior is observed. Therefore, this extra computing time in Algorithm 2.1
(LssIllcoApprox) is saved. Note again how the accuracy of the result corresponds to the condition number.

For larger dimensions it is very time consuming to compute an accurate solution to test against. But the results of
Algorithm 4.20 (LssIllcoErrBndNear) are based on an approximate solution computed along the lines of Algorithm 2.1
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Fig. 5.3. Accuracy of Algorithm 2.1 (LssIllcoApprox) for inverse Hilbert and Boothroyd matrices as defined in Table 5.1. The upper parts show the
condition number, the lower parts the relative error of the results.

Table 5.3
Median relative error of the bounds computed by Algorithm 4.16 (LssErrBndNear) for the matrices
in Table 5.1.

Matrix n cond(A) b=randn(n,1) b=A*randn(n,1)

Pascal 14 1.4 · 1013 5.1 · 10−17 1.2 · 10−19

15 1.6 · 1014 3.3 · 10−17 1.2 · 10−17

16 1.8 · 1015 4.8 · 10−17 1.0 · 10−17

17 2.2 · 1016 2.0 · 10−16 6.3 · 10−17

18 2.5 · 1017 Failed Failed
Hilbert 11 7.4 · 1012 4.9 · 10−17 4.5 · 10−17

Inverse Hilbert 11 1.1 · 1013 4.3 · 10−17 5.1 · 10−17

Scaled Hilbert 11 8.7 · 1012 4.3 · 10−17 5.2 · 10−17

Boothroyd 11 5.0 · 1013 6.1 · 10−17 1.1 · 10−19

Vandermonde 13 3.0 · 1014 4.4 · 10−17 7.8 · 10−17

(LssIllcoApprox); so from the following results for LssIllcoErrBndNear we can deduce that the approximations by
Algorithm 2.1 (LssIllcoApprox) are at least as good as the computed bounds. Computational results for the latter are
given in Section 5.3.

5.2. Results for LssErrBndNear

Next we discuss the results of Algorithm 4.16 (LssErrBndNear). Computing times are already given in Table 4.1. Those
are for Algorithm 4.11 (LssErrBndNear0), but the difference to Algorithm 4.16 (LssErrBndNear) is only few O(n2)
operations and negligible.

Concerning accuracy, we first consider the matrices in Table 5.1. Again we tested linear systems with right hand sides
b=randn(n,1) and b=A*randn(n,1). As a typical example we display in Table 5.3 the results for Pascal matrices
for dimensions 14 to 18. To save space we display for the other matrices from Table 5.1 only the results of Algorithm
LssErrBndNear for the highest dimension it succeeded.

As can be seen the relative error is of the order u and better. So the extra-precise residual iteration performs as
expected, not only for approximations but also for the rigorous error bound. Also themaximum condition number for which
LssErrBndNear successfully computes an error bound is not too far fromu−1, which is due to the Perron iteration (see also
Fig. 4.1). However, this is partly due to the fact that the dimensions are small. Better results in this respect (using directed
rounding) are obtained by Algorithm 4.2 (LssErrBnd) to be described in Section 2 of this paper. For all matrices except
Vandermonde, this algorithm can handle one dimension larger.
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Fig. 5.4. Results of Algorithm 4.16 (LssErrBndNear) for ill-conditioned random matrices of dimension n = 100 (o), n = 200 (∗), n = 500 (+) and
n = 1000 (×).

Next we treat ill-conditioned matrices of larger dimension. For dimensions up to u−1 we may safely use randsvd
(n,cnd) from the Matlab matrix gallery applying some random orthogonal transformation from the left and right to a
diagonal matrix with specified singular values. As mentioned before, this approach is not applicable for condition numbers
beyond u−1 because of the inevitable presence of rounding errors.

In Fig. 5.4 themedian relative errors of all solution components of the result of AlgorithmLssErrBndNear for right hand
side b=randn(n,1) and b=A*randn(n,1) over 100 samples is displayed for dimensions n = 100 (o), n = 200 (∗), n =

500 (+) and n = 1000 (×). Note that the maximum relative error over all samples is below 10−13, so that until failure for a
condition number of roughly u−1/n the accuracy of the bounds is not too far from u. For dimensions n = 100, n = 200, n =

500 and n = 1000 there is no failure in the 100 samples until condition numbers 7.9 ·1013, 2.5 ·1013, 4.0 ·1012 and 1.6 ·1012,
respectively, as depicted on the x-axis in Fig. 5.4. Again more ill-conditioned matrices can be treated in the same computing
time using directed rounding as by Algorithm 4.2 (LssErrBnd) presented in Part II of this paper.

Finally we mention that one may compute the error bound of R · A by [aRA,eRA] = Dot2Near(R,A) rather than
[aRA,eRA] = DotErr(R,A). Due to the interpretation overhead this would be costly; however, in all test examples we
did not see a significant difference in accuracy.

Next we discuss the quality of rigorous error bounds computed by Algorithm 4.20 (LssIllcoErrBndNear) for
extremely ill-conditioned matrices.

5.3. Results for LssIllcoErrBndNear

A timing comparison has already been shown in Table 5.2. Concerning accuracy we first treat the matrices in Table 5.1.
The results for Pascal matrices are already shown in the right graph of Fig. 2.1. As expected the rigorous error bound is
weaker than the approximate solution shown in the left graph. In both cases the quality is nicely inverse proportional to the
condition number.

The results for Hilbert and scaled Hilbertmatrices do not reveal new information, so the graphs are omitted to save space.
Similar to Fig. 5.2 the rigorous error bound is weaker, but the behavior is similar. The same holds true for inverse Hilbert
and Boothroyd matrices as shown in Fig. 5.5. The results are similar to the approximate solutions computed by Algorithm
LssIllcoApprox shown in Fig. 5.3; the results for right hand sides randn(n,1) and A*randn(n,1) are practically
identical.

Again the results are surprisingly good for inverse Hilbert matrices: for example, for dimension n = 40 the matrix has a
condition number larger than 1037, but nevertheless the error bound guarantees more than 10 correct digits of the solution
for both right hand sides b=randn(n,1) and b=A*randn(n,1). We have no conclusive explanation for that; a similar
behavior is observed for Vandermonde matrices and will be discussed in Section 5.4.

Finally we consider extremely ill-conditioned matrices of dimensions up to n = 1000. A method how to construct
extremely ill-conditioned matrices being exactly representable in floating-point of higher dimension is described in [37].
Moreover, interestingmethods can be found in [38,39]. Yet anotherway, which is used in INTLAB [48] for condition numbers
up to about 10100, is to multiply a couple of sparse unit lower triangular matrices with small integer entries and to form ATA
until the desired condition number is achieved. For the following data we tried all methods with similar results.
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Fig. 5.5. Accuracy of Algorithm 4.20 (LssIllcoErrBndNear) for inverse Hilbert and Boothroyd matrices as defined in Table 5.1. The upper parts show
the condition number, the lower parts the relative error of the results. In the left graph, ‘‘◦’’ corresponds to the traditional condition number ∥A−1
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LsslllcoErrBndNear for ill-conditioned matrices, r.h.s. b=randn(n,1) and b=A*randn(n,1)
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Fig. 5.6. Results of Algorithm 4.16 (LssErrBndNear) for ill-conditioned random matrices of dimension n = 100 (o), n = 200 (∗), n = 500 (+) and
n = 1000 (×).

In Fig. 5.6 the results of Algorithm 4.20 (LssIllcoErrBndNear) for dimensions n ∈ {100, 200, 500, 1000} and for right
hand sides b=randn(n,1) and b=A*randn(n,1) are shown in one graph. With increasing condition number the quality
of the error bounds decreases. The maximum treatable condition number is of the order u−2/n2. In contrast, the results
of Algorithm 4.16 (LssErrBndNear) as shown in Fig. 5.4 are always of high accuracy — until the algorithm fails. This is
due to the extra-precise residual iteration in LssErrBndNear, which could not be used in LssIllcoErrBndNear. For
dimensions n = 100, n = 200, n = 500 and n = 1000 there is no failure of LssIllcoErrBndNear in the 100 samples
until condition numbers 6.2 · 1025, 1.5 · 1026, 4.7 · 1025 and 3.3 · 1024, respectively, as depicted on the x-axis in Fig. 5.6.
Accidentally the number for dimension n = 200 is larger than for n = 100 due to the randomness of the examples.
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Fig. 5.7. Accuracy of Algorithm 4.20 (LssIllcoErrBndNear) (∗) and Matlab built-in A \ b (+) for original (left graph) and equilibrated Vandermonde
matrices (right graph) as defined in Table 5.1. The upper parts show the condition number, the lower parts the relative error of the results. In both cases
the right hand side is b=randn(n,1). Condition numbers of original and equilibrated Vandermondematrices (o) and of optimally scaled matrices (�) are
shown.

5.4. Vandermonde matrices

We observed in Fig. 5.5 that the quality of the error bounds for the inverse Hilbert matrices was considerably better than
one would expect from the condition number. For example, the condition number for n = 40 is 2.3 · 1037, but nevertheless
the rigorous bounds by Algorithm 4.20 (LssIllcoErrBndNear) are accurate to 10 decimal digits.

A similar behavior can be observed for the notoriously ill-conditioned Vandermonde matrices [56,57]. In Fig. 5.7 we
display the results of LssIllcoErrBndNear for the original Vandermonde matrix as defined in Table 5.1 and of its
equilibrated version. In both cases the right hand side is b=randn(n,1); the results for b=A*randn(n,1) are completely
similar. The circles in the upper halves denote the traditional condition number ∥A−1

∥2∥A∥2, increasing rapidly beyond
1040. In the lower halves the median relative error over all solution components for the built-in Matlab call A \ b is given
by ‘‘+’’. For comparison also the median relative error of LssIllcoErrBndNear is depicted by ‘‘∗’’. For small dimension
sometimes the solution is exactly representable; in that case an error zero is replaced by 10−20.

In the left graph of Fig. 5.7 we see that for condition numbers way beyond 1020 the results of the built-in Matlab
approximation A\b still maintain some accuracy, apparently contradicting the well-accepted rule of thumb that in IEEE 754
double precision for condition number 10k about 16−k correct digits can be expected. In contrast, the linear systemwith the
equilibrated matrix in the right graph shows the expected behavior: the relative error surpasses 1 at the condition number
1016 (the dotted line in the upper half). Here is yet another example that equilibration need not to improve the quality of
the result.

We do not have a convincing explanation for that. Similar contradictions to the mentioned rule of thumb have been
observed in [3]. A reason might be the following. The Bauer–Skeel condition number κ := ∥ |A−1

| · |A| ∥∞ is displayed by
‘‘�’’ in the left graph in Figs. 5.5 and 5.7. This is the optimal normwise condition number achievable by left diagonal scaling,
and it is also equal to the componentwise condition number with respect to relative perturbations of the matrix entries.

The accuracy of the Matlab-approximation A \ b satisfies the well-known rule of thumb with respect to the Bauer–Skeel
condition number for the original Vandermondematrix, see Fig. 5.7; the sameobservation applies to inverseHilbertmatrices
as in Fig. 5.5. In any case the computational results for inverse Hilbert and Vandermonde matrices are nice but seem to be a
kind of artifact.

6. Conclusion

In this Part I of the article all algorithms use solely ordinary floating-point arithmetic in rounding to nearest. One purpose
of the paper is to show that it is fairly simple to obtain rigorous error bounds subject to that constraint.
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An algorithm for computing approximations of reasonable quality for extremely ill-conditioned matrices with condition
number ≫u−1 was given. Moreover, algorithms computing rigorous error bounds (including possible underflow), also
for extremely ill-conditioned matrices, have been presented. All algorithms are given in executable Matlab-code. All
algorithmsuse only the basic floating-point operations in rounding to nearest. For the extra-precise dot product, i.e. products
accumulated in double the working precision with result rounded into working precision, an algorithm using only the basic
floating-point operations in rounding to nearest was given as well.

The error bounds are of high quality, however, certain estimates in rounding to nearest seem improvable. Considerably
sharper error bounds for ill-conditioned matrices and also for extremely ill-conditioned matrices are presented in Part II of
this paper. They are a little bit more involved; of course, they can be computed in rounding to nearest, but are better and
easier to discuss using directed rounding.
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