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Abstract In 1989, Jean-Michel Muller gave a famous example of a recurrence
where, for particular initial values, the true real iteration converges to a repel-
lent fixed point, whereas finite precision arithmetic produces a different result,
the attracting fixed point. We analyze recurrences in that spirit and remove
a gap in previous arguments in the literature, that is, the recursion must be
well defined. The latter is known as the Skolem problem. We identify initial
values producing the limit equal to the repellent fixed point, show that in
every ε-neighborhood of such initial values the recurrence is not well-defined,
and characterize initial values for which the recurrence is well-defined.

We give some new examples in that spirit. For example, the correct real
result, i.e., the repellent fixed point, may be correctly computed in bfloat,
half, single, double, formerly extended precision (80 bit format), binary128 as
well as many much higher precisions. Rounding errors may be beneficial by
introducing some regularizing effect.
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1 Introduction

At the ICIAM 2019 conference in Valencia the following famous recurrence
was shown:

x0 :“ 4, x1 :“ 4.25 and xn`1 :“ 108´ p815´ 1500{xn´1q{xn. (1)

The true limit of this recurrence is L “ 5, whereas in double precision (bi-
nary64) the computed limit is 100. That came as a surprise to the audience,
so we decided to write this note giving the background and analysis of such
recurrences.

The first example in that spirit is due to Muller [11]:

x0 :“ 11{2, x1 :“ 61{11 and xn`1 :“ 111´ p1130´ 3000{xn´1q{xn. (2)

The limit of the recurrence over the field of real numbers is L “ 6, whereas in
double precision the limit is 100. However, the initial value x1 :“ 61{11 is not
representable in binary in any precision, so that for the input data stored in
the computer the limit 100 is correct.

The above example (1) was given by Kahan [9] together with an explana-
tion on the behavior of the recurrence. In this example all input data including
the initial values are representable in binary with at least 10 bits precision. In
his book [12] Muller defines different initial values x0 :“ 2, x1 :“ ´4 for his
recurrence (2), also representable in binary with at least 10 bits precision, and
the same behavior of the recurrence as before.

The examples have in common the attracting fixed point L “ 100 together
with a repellent fixed point β “ 5 or β “ 6, respectively. In Kahan’s exam-
ple x2 “

76
17 , in Muller’s first example x1 “

61
11 , and in his second example

x3 “
347
37 . Those values have in common that they are not representable in

binary, regardless of the precision. Replacing the initial value pxk´1, xkq by
the computed value pxk´1, rxkq for k “ 2, 1, 3, respectively, it follows that the
recurrence over R, if it is well-defined, necessarily converges to the attracting
fixed point L “ 100.

An implicit assumption for that assertion is that xi ‰ 0 for all i P N0,
otherwise the recurrence is not well-defined. The problem, to identify the in-
dices with an iterate equal to zero for a linear recurrence is known as the
Skolem problem [14,6]. Instances of such problems are known to be NP-hard
[2]. We will characterize the initial pairs px0, x1q for which such recurrences
are well-defined together with their limits.

We show that for every initial pair px0, x1q with recurrence being well-
defined and converging to a repellent fixed point and any ε-neighborhood of
x1 there exist x11 in this neighborhood such that the recurrence over R starting
with px0, x

1
1q produces xn “ 0 for some n P N.

Moreover, it is suggested in the literature that, due to the fact that some
iterate is not representable in floating-point, the iteration must converge to
the attracting rather than the repellent fixed point. That may not be true for
the floating-point iteration due to “fortunate” rounding errors.
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We give new explicit examples, starting with one where the correct value,
i.e., the repellent fixed point, is produced in bfloat1, half precision and single
precision, but erroneous result in double precision (binary64) and extended
precision (binary128). Other examples produce the correct limit, the repellent
fixed point, in much higher precisions.

2 Analysis of recurrences

In the following we will take a closer look at recurrences of the type (1) or (2).
We start the analysis in a more general setting and define

xn`1 :“ a` pb` c{xn´1q{xn with a, b, c P R (3)

for given initial values px0, x1q P R2. The auxiliary recurrence yn`1 :“ xnyn
for 0 ď n P N and y0 :“ 1 leads to

yn`2

yn`1
“ a` pb`

cyn´1

yn
q
yn
yn`1

provided that xn ‰ 0 for 0 ď n P N, so that

yn`2 “ ayn`1 ` byn ` cyn´1 for 1 ď n P N. (4)

Note that the linear recurrence (4) is always well defined. The characteristic
polynomial is

χpyq “ y3 ´ ay2 ´ by ´ c “: py ´ αqpy ´ βqpy ´ γq. (5)

For simplicity we assume

|α| ą |β| ą |γ| ą 0 and α, β, γ P R. (6)

For all examples above and the new examples to be presented later that as-
sumption is fulfilled. For given y0, y1, y2 the recurrence (4) is characterized by
a triple pp, q, rq P R3 such that

yn “ αnp` βnq ` γnr for 0 ď n P N. (7)

The recurrence (3) is well-defined, i.e., xi ‰ 0 for all i P N0, if and only if
yi ‰ 0 for all i P N. The initial value y0 is only a scaling leading to the same
recurrence (3). Using y0 “ p` q ` r “ 1 we can rewrite (7) into

yn “ pα
n ´ γnqp` pβn ´ γnqq ` γn for 0 ď n P N. (8)

Thus, the initial values px0, x1q are coupled with pp, qq by the linear system
ˆ

α´ γ β ´ γ
α2 ´ γ2 β2 ´ γ2

˙ˆ

p
q

˙

“

ˆ

x0 ´ γ
x0x1 ´ γ

2

˙

. (9)

1 bfloat [15] uses 16 bits like half precision, but trades a larger exponent range against
only 8 bit precision. It has been successfully used in deep learning and large scale networks
[1,3], see also [13].
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By assumption (6) the determinant pα ´ βqpβ ´ γqpγ ´ αq is nonzero so that
the linear system is solvable for all px0, x1q.

The intention of the mentioned examples is that for the specified initial
values px0, x1q the real recurrence pxiq as in (3) converges to the repellent
fixed point β, whereas any perturbation of px0, x1q makes the recurrence (3)
converge to the attracting fixed point α, the root of largest absolute value.

However, that includes the statement that the recurrence (3) is well-defined
for the given initial values px0, x1q. Therefore we next characterize the pairs
px0, x1q for which that is true, i.e., the recurrence (3) is well-defined and con-
verges to β.

Lemma 1 Let x0, x1 P R be given, and let the recurrence (3) with character-
istic polynomial (5) satisfy (6). Then (3) is well-defined and xi Ñ β if, and
only if

x0 ‰ γ and (10a)

x1 “ β ` γ ´ βγ{x0 and (10b)

x0 ‰ γ ´
γnpβ ´ γq

βn ´ γn
for all n ě 1. (10c)

Remark 1 Note that the third condition implies x0 ‰ 0 for n “ 1, and for
n “ 2 together with the second condition also x1 ‰ 0. Also note that for
choosing x1 :“ β ` γ ´ βγ{x0 the iteration, being well-defined or not, only
depends on x0.

Proof By (8),

lim
nÑ8

xn :“

$

&

%

α if, and only if, p ‰ 0,
β if, and only if, p “ 0, q ‰ 0,
γ if, and only if, p “ q “ 0,

(11)

where the last case is equivalent to x0 “ x1 “ γ. Since (9) determines p and q
uniquely, pxiq converges to β if, and only if, p “ 0 and q “ x0´γ

β´γ ‰ 0, which
in turn is equivalent to

x1 “
`

pβ2 ´ γ2qq ` γ2
˘

{x0 “ β ` γ ´ βγ{x0 and x0 ‰ γ.

That means that, if (3) is well-defined, then xi converges to β if, and only
if, (10a) and (10b) are true. The recurrence (3) is well-defined if, and only if,
yn ‰ 0 for all n ě 1. If p “ 0 and q ‰ 0, that is by (8) equivalent to

´γn ‰ pβn ´ γnqq “
pβn ´ γnqpx0 ´ γq

β ´ γ
for all n ě 1.

Hence the recurrence (3) is well-defined if, and only if, (10c) is true. That
finishes the proof. [\
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This shows that for px0, x1q on the hyperbola H defined by x1 “ β ` γ ´
βγ{x0 the recurrence pxiq is well-defined and converges to β except infinitely
many discrete points. The accumulation point of those gaps, determined by
condition (10c), is x0 “ γ, the repellent fixed point with smallest absolute
value.

Next we show that the set of initial values px0, x1q with xn “ 0 for some
n P N, i.e., with not well-defined recurrence, form a hyperbola Hn, and the
limit of those hyperbolas is H, the hyperbola of initial values for which, except
for infinitely many discrete points, the recurrence converges to β.

Lemma 2 Assume the recurrence (3) with characteristic polynomial (5) sat-
isfies (6). For given k P N, denote by Zk the set of initial values px0, x1q P R2

with x0x1 ‰ 0, xi ‰ 0 for 0 ď i ă k, and xk “ 0.
Then there exists some k0 P N such that for every k ě k0 the set Zk forms

a hyperbola Hk, and for k Ñ8 the hyperbolas Hk tend to the hyperbola H of
initial pairs with limit point β of the recurrence, i.e., x1 “ β ` γ ´ βγ{x0. If
(6) is sharpened into α ą β ą γ ą 0, then k0 “ 2.

Proof Set n :“ k ` 1, let px0, x1q be given with x0x1 ‰ 0, xi ‰ 0 for 0 ď i ă k
and xn´1 “ xk “ 0. Then yn “ 0 and yi ‰ 0 for 0 ď i ă n, and (8) implies

M :“

¨

˝

α´ γ β ´ γ 0
αn ´ γn βn ´ γn 0
α2 ´ γ2 β2 ´ γ2 ´x0

˛

‚

¨

˝

p
q
x1

˛

‚“

¨

˝

x0 ´ γ
´γn

´γ2

˛

‚. (12)

The determinant of the matrix is zero if, and only if, pα ´ γqpβn ´ γnq “
pβ ´ γqpαn ´ γnq, i.e.,

fpβq “ fpαq for fpxq :“
xn ´ γn

x´ γ
.

Hence, if α ą β ą γ ą 0 and x ą γ,

fpxq “ xn´1 ` xn´2γ ` . . .` γn´2x` γn´1

is strictly increasing, showing that the determinant of the matrix in (12) is
nonzero. Then the unique solution of the linear system is

x1 “
P ´Q{x0

R
with

$

&

%

P “ αnpγ2 ´ β2q ` βnpα2 ´ γ2q ` γnpβ2 ´ α2q

Q “ αnβγpγ ´ βq ` βnαγpα´ γq ` γnαβpβ ´ αq
R “ αnpγ ´ βq ` βnpα´ γq ` γnpβ ´ αq

forming the desired hyperbola Hk. Note that R “ ´detpMq{x0, so that x1 is
well-defined for x0 ‰ 0. With (6) but without the assumption α ą β ą γ ą 0,
the determinant x0pα

npβ ´ γq ` βnpγ ´ αq ` γnpα´ βqq of the matrix in (12)
may vanish as for α “ ´7, β “ 5, γ “ 2 and n “ 3. In that case x3 ‰ 0 for
almost all values of x0, and the hyperbola shrinks to a point.

However, for large n the determinant tends to x0α
npβ ´ γq by (6), the

linear system (12) is solvable for large enough n, and the assertion remains
valid.
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For large enough n, the recurrence is not well-defined on the hyperbola
Rpnqx1 “ P pnq´Qpnq{x0. For nÑ8, P pnq Ñ αnpγ2´β2q, Qpnq Ñ αnβγpγ´βq
and Rpnq Ñ αnpγ ´ βq, which is asymptotically the hyperbola

x1 “
γ2 ´ β2 ´ βγpγ ´ βq{x0

γ ´ β
“ β ` γ ´ βγ{x0. (13)

That is the hyperbola H of initial values px0, x1q implying the limit β. [\

In Figure 1 the hyperbola with initial values px0, x1q converging to the limit β,
and hyperbolas Hk of initial values producing a not well-defined recurrence are
shown. In order to produce a better picture we use a recurrence with roots
of the characteristic polynomial close together, namely α “ 1.5, β “ 1.25 and
γ “ 1, but that does not change the qualitative behavior.

Fig. 1 Hyperbolas with limit β and initial values producing a not well-defined recurrence

The right picture in Figure 1 zooms near the unique initial values px0, x1q “
pγ, γq implying convergence to the smallest root γ. In fact, the recurrence is
entirely stationary in that case.

The previous Lemma 2 and in particular (13) imply that in every ε-neigh-
borhood of initial values px0, x1q with well-defined recurrence converging to β
there exists a pair of initial values with not well-defined recurrence.

Corollary 1 Let the recurrence (3) with characteristic polynomial (5) satis-
fy (6). Suppose that for given initial values px0, x1q P R2 the recurrence pxiq is
well-defined and converges to β. Then for every 0 ă ε P R there exists x11 P R
with |x11 ´ x1| ă ε such that the recurrence with initial values px0, x

1
1q is not

well-defined.

Now we can verify the claims on the recurrences mentioned at the be-
ginning. For Kahan’s example (1) the roots are pα, β, γq “ p100, 5, 3q. The
recurrence with initial value x0 is not well-defined if, and only if,

x0 “ 4 “ γ ´
γnpβ ´ γq

βn ´ γn
“ 3´

2 ¨ 3n

5n ´ 3n
“ 3´

2

p5{3qn ´ 1
for some n ě 1.
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That is obviously not possible, so taking x1 :“ β`γ´βγ{x0 “ 5`3´15{4 “
4.25 implies xi Ñ 5 “ β.

For Muller’s example (2) the roots are pα, β, γq “ p100, 6, 5q. The recurrence
with initial value x0 is not well-defined if, and only if,

x0 “ γ ´
γnpβ ´ γq

βn ´ γn
“ 5´

5n

6n ´ 5n
“ 5´

1

p6{5qn ´ 1
for some n ě 1.

That is obviously not possible for the original value x0 “ 11{2 given in [11].
For x0 “ 2 given in [12] the recurrence is well-defined if

1

p6{5qn ´ 1
‰ 3 for all n ě 1,

which is equivalent to n ‰ logp4{3q
logp6{5q « 1.58. Hence pxiq is well-defined and

converges to 6 “ β.

2.1 Camouflaged convergence

It may not be visible from a floating-point iteration that an iteration is, in
fact, not well-defined. Consider

x0 :“
109225

43691
, x1 :“

10923

4369
and xn`1 :“ 56.5` p160´ 737.5{xn´1q{xn.

(14)
The roots of the characteristic polynomial are pα, β, γq “ p59,´5, 2.5q and
fulfill (6), and the initial values px0, x1q satisfy x1 “ β`γ´βγ{x0. According
to Lemma 1 the limit is β if the recurrence is well-defined.

The result for the recurrence computed in half, single, double and infinite
precision is given in Table 1, showing convergence to the attracting fixed point
α “ 59.

The recurrence is constructed such that x0 “ γ ´
γnpβ ´ γq

βn ´ γn
for n “

17, so that by Lemma 1 the real recurrence is not well-defined. That fact is
camouflaged by the floating-point iteration in single and in double precision.

As for Muller’s original example in [11], the initial values px0, x1q in exam-
ple (14) are not representable in binary floating-point, so in that respect the
limit 59 computed in half, single and double precision is correct.

One may ask whether pathological examples of a recurrence exist with
x0, x1 being exactly representable in binary in some precision and x1 on the

hyperbola x1 “ β`γ´βγ{x0, but x0 “ γ´
γnpβ ´ γq

βn ´ γn
for some n ě 1. In that

case the pair px0, x1q is one of the described gaps, i.e., the conditions (10a)
and (10b) for convergence to β are satisfied, but by (10c) the sequence is not
well-defined. We neither found such an example nor could we prove that it
does not exist.
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Table 1 Results for the recurrence (14).

n half single double over R
0 2.5019531 2.4999428 2.4999428 109225/43691 « 2.4999428
1 2.5000000 2.5001144 2.5001144 10923/4369 « 2.5001144
2 2.5937500 2.4997749 2.4997711 27305/10923 « 2.4997711
3 4.4375000 2.5005341 2.5004578 13655/5461 « 2.5004578
4 28.5000000 2.5009155 2.4990846 6825/2731 « 2.4990846
5 56.2812500 2.5449677 2.5018315 683/273 « 2.5018315
6 58.8750000 3.4965782 2.4963397 1705/683 « 2.4963397
7 59 19.3815498 2.5073315 855/341 « 2.5073314
8 59 53.8727341 2.4853823 425/171 « 2.4853801
9 59 58.7636375 2.5294639 43/17 « 2.5294118

10 59 58.9898109 2.4430787 105/43 « 2.4418605
11 59 58.9995804 2.6483768 55/21 « 2.6190476
12 59 58.9999809 2.9301292 25/11 « 2.2727273
13 59 59 16.0674950 3
14 59 59 50.7931126 5/3 « 1.6666667
15 59 59 58.7463651 5
16 59 59 58.9764139 0
17 59 59 59.0000847
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

27 59 59 59.0000000
28 59 59 59
29 59 59 59

3 Yet other pathological examples

We finally give some new examples where very small precisions yield the correct
result, whereas higher precisions do not. We use the four precisions as in
Table 2, three of them according to the IEEE-754 [8] floating-point standard.

Table 2 Precisions used.

name precision in bits exponent bits

bfloat (truncated binary16) 8 8
half precision (binary16) 11 5
single precision (binary32) 24 8
double precision (binary64) 53 11

The format “bfloat” decreases the precision of binary16 in order to increase
the exponent range. It is often called truncated binary16, however, we use that
format in rounding to nearest. The middle column gives the precision k in bits
including the implicit 1, so that 2´k is the relative rounding error unit. First,
consider the recurrence

x0 :“ ´6, x1 :“ 64 and xn`1 :“ 82´ p1824´ 6048{xn´1q{xn. (15)

All input data are exactly representable in 8 bits binary precision, so in bfloat
and therefore in all other precisions. The roots of the characteristic equation
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Table 3 Results for x0 :“ ´6, x1 :“ 64 and xn`1 :“ 82´ p1824´ 6048{xn´1q{xn.

n bfloat half single double over R
0 -6 -6 -6 -6 -6.000000
1 64 64 64 64 64.000000
2 37.750000 37.750000 37.750000 37.750000 37.750000
3 36.250000 36.187500 36.185429 36.185430 36.185430
4 36 36.031250 36.020496 36.020498 36.020498
5 36 36 36.002277 36.002276 36.002276
6 36 36 36.000256 36.000253 36.000253
7 36 36 36.000031 36.000028 36.000028
8 36 36 36.000004 36.000003 36.000003
9 36 36 36 36.000000 36.000000

10 36 36 36 36.000000 36.000000
... ... ... ... ...

167 36 36 36 36.000456 36.000000
168 36 36 36 36.000532 36.000000
169 36 36 36 36.000620 36.000000

... ... ... ... ...
217 36 36 36 36.867247 36.000000
218 36 36 36 36.987987 36.000000
219 36 36 36 37.121863 36.000000

... ... ... ... ...
296 36 36 36 41.999817 36.000000
297 36 36 36 41.999843 36.000000
298 36 36 36 41.999866 36.000000

... ... ... ... ...
442 36 36 36 42.000000 36.000000
443 36 36 36 42.000000 36.000000
444 36 36 36 42.000000 36.000000

are pα, β, γq “ p42, 36, 4q. Thus β` γ´βγ{x0 “ 36` 4` 144{6 “ 64 “ x1. By
Lemma 1 the recurrence would not be well-defined if, and only if,

x0 “ ´6 “ γ ´
γnpβ ´ γq

βn ´ γn
“ 4´

32

9n ´ 1
for some n ě 1. (16)

That is obviously not possible.
The results for the different precisions are displayed in Table 3. Clearly the

last column, iteration over R, shows convergence to the correct limit β “ 36,
the repellent fixed point. The second iterate x2 “

151
4 is computed without

rounding error in all mentioned precisions, but the third iterate x3 “
5464
151 is

not representable in any binary precision but rounded into some x̃3.
The question whether the iteration is well-defined or not depends only on

the first initial value. Hence the real iteration starting with px2, rx3q is also well-
defined. Therefore, mathematically the iteration with initial values px2, rx3q
converges to the attracting fixed point α “ 42. However, due to “beneficial”
rounding errors the recurrence in bfloat, half and single precision converge to
the correct value, the repellent fixed point β “ 36.

When displayed as an integer (without trailing zeros) in Table 3, the value
of the recurrence is equal to that integer. That happens in bfloat for rx4, in
half precision for rx5, and in single precision for rx9.
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The double precision recursion becomes stationary after some 444 itera-
tions at rx444 « 42´ 2.8 ¨ 10´14, close to the attracting fixed point α “ 42.

It is sometimes suggested in the literature that, due to a rounding error
in some iterate, the floating-point iteration must converge to the attracting
fixed point α “ 42. In the example above that was true for double precision
(binary64), but not true for smaller precisions because rounding errors may
be beneficial.

One might think that increasing the precision further should yield the same
erroneous result, namely suggesting convergence to the attracting fixed point
α “ 42. However, that is not true. The following Table 4 shows results of

Table 4 Recurrence xn`1 :“ 82´ p1824´ 6048{xn´1q{xn for which pα, β, γq “ p42, 36, 4q.

x0 x1 8 11 24 53 64 113

-6 64 36 36 36 42.0 36 42.0
-288 40.5 36 36 36 36.0 42 42.0
-0.5 328 36 36 36 36.0 42.0 36.0

-0.1875 808 36 36 36 36.0 42.0 42.0
0.5625 -216 36 36 36 42.0 42.0 42.0

64 37.75 36 36 36 42.0 36.0 42.0

the recurrence (15) for different initial values px0, x1q and different precisions.
Beyond those in Table 2 we add2 the 80-bit format, formerly called extended
precision, with 64 bits precision computed using [7], and IEEE-754 quadruple
(binary128) with 113 bits precision. Using (16) one verifies that the recurrences
are well-defined.

Numbers shown with a decimal point represent a floating-point number
very near to α or β, close to working precision, otherwise the displayed integer
is the stationary point of the floating-point iteration. Results in bold face
indicate that the recurrence produces the correct limit, i.e., the repellent fixed
point β.

The first line corresponds to the initial values used in Table 3. As can be
seen increasing the precision to 64 bits yields the correct results, but further
increasing produces the wrong but expected result, the attracting fixed point α.
But that need not to be so. In the third line all but 64 bit precision produces
the correct result due to beneficial rounding errors.

In all examples up to now, the repellent fixed point β is in F. It was
asked [10] by Masahide Kashiwagi from Waseda University, Tokyo, whether
this is mandatory. The following final example shows that this is not the case.
Consider

x0 :“ 8, x1 :“ ´31 and xn`1 :“ 1.5` p972` 128{xn´1q{xn. (17)

All input data are representable in 8 bit binary floating-point, i.e., in bfloat
and higher precisions, and the characteristic equation y3 ´ 1.5y2 ´ 972y´ 128

2 Many thanks to Kai Torben Ohlhus for performing the calculations in higher precision
using MPFR [7].
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has the roots

α “ 32, β “
´61´

?
3657

4
« ´30.3683, γ “

´61`
?

3657

4
« ´0.1317.

Using Lemma 1 one verifies that the recurrence is well-defined.

The repellent fixed point β is obviously not in F, and the best we can
expect is a stationary point β̃ near β. We say that the recurrence converges
numerically to β in precision k bits if the relative error between β̃ and β is of
the order of the relative rounding error unit 2´k.

Running the recurrence (17) in different precisions of k bits,

for all k P t8, 9, . . . , 227u except k “ 183 (18)

it converges numerically to the repellent fixed point β. For all precisions

k P t8, 9, . . . , 227u z t162, 169, 177, 183, 194, 197, 198, 200, 214, 222u

the stationary point was the rounded-to-nearest value of β in the given preci-
sion. Note that this includes bfloat, half, single, double, and extended precision.

Fig. 2 Percentage of precisions with numerical convergence to β.
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Moreover, we ran the recurrence in all precisions from 8 up to 5000 bits.
The accumulated percentage of precisions r8, 9, . . . , 5000s with numerical con-
vergence to β is displayed in the upper curve of the left graph of Figure 2. For
example, in about 90% of all precisions from 8 to 1000, or in about 60% of
all precisions from 8 to 3000 numerical convergence to β was observed. The
lower curve is the accumulated percentage with stationary point equal to the
rounded-to-nearest value of β; this is true, for example, for about 50% of all
precisions from 8 to 3000. The right graph shows the same result zoomed into
precisions r8, 9, . . . , 250s.

Even for very high precision recurrences of type (3) may converge nu-
merically to β. For example, executing (17) in 17, 721 bits precision becomes
stationary close to β up to working precision after some 2, 262 iterations.

As has been pointed out by Masahide Kashiwagi [10], that behavior be-
comes more clear when looking at the stability of the recurrence at the fixed
points. Writing the recurrence (3) as

F px, yq :“

ˆ

y
a` pb` c{xq{y

˙

(19)

and evaluating the spectral radius of the Jacobian at the fixed points yields
the results as in Table 5.

Table 5 Spectral radius of the Jacobian of (19) at the fixed points α, β and γ.

recurrence α β γ

(1) 0.05 20 33.3
(2) 0.06 16.7 20
(14) 0.085 11.8 23.6
(15) 0.86 1.17 10.5
(17) 0.949 1.054 242.9

The smaller the spectral radius for the attracting fixed point α, the more
we may expect a stable the recurrence. Similarly, for a spectral radius for
the repellent fixed point β close to 1 instabilities are more likely. That is
particularly the case for the iterations (15) and even more for (17).

We may add some interpretation of the results of the recurrence (17) in
different precisions: they are correct or not depending on the point of view.
Executed over R the recurrence converges to the repellent fixed point β, in
that respect the result is correct for all precisions listed in (18) but incorrect
for k “ 183. However, x2 “

´1883
62 is not a binary floating-point number in

any precision, but necessarily rounded into some x̃2. The limit of the real
recurrence (17) with initial values x1 and x̃2 is the attracting fixed point α,
and in that respect the result for precision k “ 183 is correct, but for all other
precisions listed in (18) it is incorrect.
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4 Conclusion

An analysis of recurrences based on Muller’s initial example (2) is presented.
Necessary and sufficient conditions are given for the recurrence being well-
defined, and for convergence to a repellent fixed point. It is shown that in every
ε-neighborhood of initial values x0, x1 with convergence to a repellent fixed
point there exist initial values x0, x̃1 producing a not well-defined recurrence.

New recurrences are presented converging (correctly) to a repellent fixed
point for smaller precisions such bfloat, half, single and double, but (incor-
rectly) not for higher precisions. Another example shows convergence to a
repellent fixed point even for very high precisions like 5000 bits and more.
As a result, rounding errors may be beneficial, and floating-point may have a
regularizing effect [4].
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