A Parallel Algorithm of Accurate Dot
Product

N. Yamanaka?® T. Ogita®® S. M. Rump ¢ S. Oishi®

aGraduate School of Science and Engineering, Waseda University, Tokyo
169-8555, Japan

YCREST, Japan Science and Technology Agency (JST)
¢ Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan

d Institute for Reliable Computing, Hamburg University of Technology, Hamburg
21071, Germany

Abstract

Parallel algorithms for accurate summation and dot product are proposed. They
are parallelized versions of fast and accurate algorithms of calculating sum and
dot product using error-free transformations which are recently proposed by the
authors (Ogita, Rump and Oishi) in [Accurate sum and dot product, STAM J. Sci.
Comput., 26:6 (2005), 1955-1988]. They have shown their algorithms are fast in
terms of measured computing time. However, due to the strong data dependence in
the process of their algorithms, it is difficult to parallelize them. Similarly to their
algorithms, the proposed parallel algorithms in this paper are designed to achieve
the results as if computed in K-fold working precision with keeping the fastness of
their algorithms. Numerical results are presented showing the performance of the
proposed parallel algorithm of calculating a dot product.

Key words: Parallel algorithm, Accurate dot product, Accurate summation,
Higher precision.

1 Introduction

Let F be a set of floating-point numbers. Let x,y € F". In this paper, we
present a parallel algorithm to compute a dot product z%y. Since dot product
is a most basic task in numerical analysis, there are a number of algorithms for

Email address: naoya_yamanaka@suou.waseda.jp (N. Yamanaka).

Preprint submitted to Elsevier Science 15 December 2006

that. Accurate dot product algorithms have various applications in numerical
analysis. Excellent overviews can be found in [4,6].

Recently, the authors (Ogita, Rump and Oishi) presented an accurate dot
product algorithm DotK [7] using so-called “error-free transformations”. Their
algorithm is fast, not only in terms of floating-point operations but also in
terms of measured computing time on a serial computer. However, it is diffi-
cult to parallelize DotK because of the strong data dependence.

To overcome this, we develop a parallelizing method for DotK and present
a new algorithm PDotK of calculating a dot product whose result is aimed
to be as accurate as that by DotK. It is shown that an error bound on the
result by PDotK is less than or equal to that by DotK.

This paper is organized as follows: In Section 2, we briefly review the error-
free transformations and the algorithms of accurate summation and dot prod-
uct (SumK and DotK) in [7]. In Section 3, we present parallel algorithms
PSumK and PDotK, which are the parallelized versions of SumK and
DotK, respectively. We also analyze the proposed algorithms and present the
theorems for PSumK and PDotK, which confirm that the proposed paral-
lel algorithms achieve the results as in K-fold precision. Finally, we present
results of numerical experiments showing the performance of the proposed
algorithm PDotK in Section 4.

The developed parallel algorithms can be applied not only to shared memory
systems but to distributed memory systems.

2 Accurate Sum and Dot Product

In this section, we briefly review some algorithms used in the accurate dot
product algorithm DotK [7].

Throughout this paper, we assume floating-point arithmetic adhering to IEEE
standard 754. Let fl (---) be the result of floating-point operations, where all
operations inside parentheses are executed by ordinary floating-point arith-
metic in rounding-to-nearest. We donote by u the machine epsilon; in IEEE
standard 754 double precision u = 27°%. We assume that neither overflow nor
underflow occur.

Following [4], we define v, as

Vi 1= na for ne N
1 —nu

When using v,, we implicitly assume that nu < 1.

Let p= (p1,-..,pn)" € F*. Then it holds that [4]

o) ~

n
5= Di
=1

< Y1 D il - (1)
=1

Note that (1) is valid for any order of addition in the summation.

The algorithm DotK is based on the error-free transformations of addition
and multiplication of two floating-point numbers. Following [7], we call the
algorithms TwoSum and TwoProduct, respectively.

First, we introduce the addition algorithm TwoSum. Knuth [1] presented the
following algorithm ' which transforms a pair (z,y) with z,y € F into a new
pair (a,b) with a,b € F satisfying t +y = a+b with a = fl (x + y), |b] < ulal.

Algorithm 2.1 (Knuth [1]) Error-free transformation of the sum of two
floating-point numbers.

function [a,b] = TwoSum(z,y)
0 a=fl(z+y)
O c¢c=fl(a—ux)
0 b=fl((z=(a-¢)+(y—-0)
Next, we will see the multiplication algorithm TwoProduct, which trans-

forms a pair (z,y) with 2,y € F into a new pair (a,b) with a,b € F satistying
z-y=a-+b, b <ulal

The multiplication routine needs to split the input arguments into two parts.
For the number ¢ given by u = 27!, we define s := [t/2]; in IEEE 754 double
precision we have ¢ = 53 and s = 27. The following algorithm by Dekker [2]
splits a floating point number x € F into two parts x, y, where both parts have
at most (s — 1) nonzero bits.

Algorithm 2.2 (Dekker [2]) The algorithm Split splits a t-bits floating-
point number x € F into xp, x; € F such that v = xp, + 4.

function [z, x;] = Split(z)
0 ¢=fl(factor - x) % factor = 2[t/21 11

O z,=fl(c—(c—1x))
O z=fl(z—xp)

I Throughout the paper, we use Matlab-style notation for describing algorithms.

y4| D2 b3 P4 D5

| | | |

TwoSum TwoSum TwoSum TwoSum
q1 q2 R} q4 g5

Fig. 1. Outline of VecSum for n =5

Using Split, the following multiplication routine by G.W. Veltkamp (see [2])
can be formulated.

Algorithm 2.3 (Veltkamp (see [2])) Error-free transformation of the prod-
uct of two floating-point numbers.

function [a,5] = TwoProduct(z, y)
O a=fi(z-y)

O [u1,22] = Split(x)

O [y1,52] = Split(y)

O b=f(z2y2— (((a—21 1) —22-41) — 21 y2))

The algorithm TwoSum can be extended to an error-free vector transforma-
tion with respect to the summation:

Algorithm 2.4 (Ogita et al. [7]) The algorithm VecSum transforms a vec-
tor p = (p1,p2,...,00)7 € F* into a new vector ¢ = (q1,q2,...,q,)° € F"
satisfying =iy pi = Y=y Gi-

function ¢ = VecSum(p)
41 = D1
fori=2:n
O (¢ ¢i—1] = TwoSum(p;, ¢;-1)
end
Here, the input vector p is transformed into the output vector ¢ without chang-

ing the sum, and ¢, is replaced by fl (3 p;). Kahan [5] calls this a “distillation
algorithm”. Figure 1 illustrates an outline of VecSum for n = 5.

! ! !

— res

Fig. 2. Outline of SumK for n =5 and K =4
By (1), the algorithm VecSum satisfies [7, (4.4)]

n—1 n
S lal < e D Ipil -
1=1 =1

(2)

In [7], the authors (Ogita, Rump and Oishi) developed an algorithm SumK,
which calculates the summation using VecSum iteratively. By SumK, we

can obtain the result as if computed in K-fold precision.

Algorithm 2.5 (Ogita et al. [7]) Summation Y.}, p; for p € F* as in K-

fold precision by (K — 1)-fold error-free vector transformation.

function res = SumK(p, K)
fori=1:K—1
p = VecSum(p)

end
e~ (:0)
i=1
Figure 2 illustrates an outline of SumK for n =5 and K = 4.
Denote s and S by i i
Sizzgpi, Si:zzl|pi|
Condition number of the sumrlr;ation of the Velc_tor p is defined by

S

cond <2pz> = E, s # 0.
i=1

Then error bounds of the result res by SumK are given as follows [7]:

b1 D2 D3 D4 Ds

| . + . + . F———» g3

Fig. 3. Outline of SumL for n =5 and L =3
Theorem 2.6 (Ogita et al. [7]) Let res be the result obtained by SumK,

then
res — | < (u+ 372))ls| + Y30 1)S (4)
and | |
res — s "
T S u -+ 3’)’2_1 + ’YQIgn—l) - cond <Z;pl> . (5)

Basically, the theorem says

% <u+ Ou”) - cond (sz> ,

1=1

which means res is computed in internally K-fold working precision.

We present here a summation algorithm SumL whose result is represented by
a sum of L floating-point numbers.

Algorithm 2.7 Summation > p; for p € F* as in L-fold precision whose
result 1s represented by a sum of L floating-point numbers.

function ¢ = SumL(p, L)
for k=1:L—-1
p(l:n—k+1)=VecSum(p(l:n—k+1))

qk = Pn—k+1

end
n—L+1
qr =1l (Z pi)
i=1

Figure 3 illustrates an outline of SumL for n =5 and L = 3.

For later use, we present the following theorem for SumL.

Theorem 2.8 Algorithm 2.7 (SumL) satisfies the following inequalities:

> pil <> Iwil (6)
i=1 i=1
L n
S k] < (1 +vm-1) D |pil (7)
k=1 i=1

) — () ,0) G\ -

Proof. We first prove (6). Let pl) = (p1 , D3 ,...,pn_jH) , 1<y <L-1,
denote the intermediate vector as the result of VecSum of j-th loop in SumL.
Let p(® := p. Then SumL satisfies

n J n—j

Y=Y aty s for 1<j<L-1
For j = L — 1, it follows by (1) that
n n—L+1 L 1
S = (Zq;mL >)\z
i1

" Ly
= ‘ﬂ(> oo)— > oo
i1 i1

n—L+1

qr — Z ng_l)
i=1

n—L+1 1
<ty Y
i=1

Applying (2) to this inductively, we have

n n—L+2 (L—Z) n
=3 S Y P <<k Y Il
i=1 i=1 i=1

The inequality (6) is proved.

We next prove (7). Using the fact that g, = fl (Z" Frly k 2) and (1) yield

n—k+1
gkl < T+ Yk) D, pz(-kfl)‘ for 1<k<L.
i=1

Again applying (2) to this inductively, we have

n—k+2

lgk] < (L4 Ynek) ks D |P
=1

k 2)‘

n
< (L + Yok)Vn—kt1 " V1 Z |pil

(1+’Ynkry Z|pz-

Using 7, < 1, we obtain

n

Zlqkl—z + Yk) V2 1lez
k=1

n

L
< (T 4790) Y 7k

il
k=1 =1
14+71 &
S 712|pz| - (1+72n 1) Z|pz
1 Tn—1 321 1=1
which is the desired formula (7). O

We can see from (6) that the resultant vector ¢ of SumL satisfies

‘Zﬁﬂ qr — 8‘

5] < O(u*) - cond <2p1> ,
S i=1

where s = > | p;, which means ¢ is computed in L-fold working precision.

We proceed to the dot product. Let z,y € F". Now, we name the following
algorithm VecProduct, which is used in DotK and transforms a dot product
2Ty into a summation Y2" ¢; such that 2Ty = 37 ¢;.

Algorithm 2.9 The algorithm VecProduct transforms two vectors x,y €
F" into a new vector t € F*" satisfying a7y = 32" t;.

function ¢t = VecProduct (z, y)
r=20
fori=1:n
[hi, t;] = TwoProduct(z;, y;)
(7, tpyi 1] = TwoSum(r, h;)
end

t2n =T
Figure 4 illustrates an outline of VecProduct for n = 4.
For later use, we present the following theorem for VecProduct.

Theorem 2.10 Algorithm 2.9 (VecProduct) satisfies the following inequal-

1 0N 2 Y2 r3 Y3 T4 Y4

[AN U N SN NN B

TwoProduct TwoProduct TwoProduct TwoProduct
l oo 7'12 | 7'13 | 7'14

t1 to 3 ty

TwoSum TwoSum TwoSum
J | l |

t5 L4 7 18

Fig. 4. Outline of VecProduct for n =4

1ties:
2n—1
Z [t < 7 Z |2y (8)
lton] < (14 7m) D zivil - (9)

i=1

Proof. We first prove (8). The left-hand side of (8) can be separated as follows:

2n—1 2n—1
th|—2|t|+2|t| (10)
1=n+1

By the property of TwoProduct, it holds that |¢;| < u|h;| for 1 < i < n, so
that

> Il < w0 [l (11)
i=1 =1

An n-vector (t,.1,tni2,---,t2,)" is obtained by the iterative use of TwoSum,
which is identical to the result of VecSum/(h) for h = (hy, hy, ..., h,)". There-

fore, (2) yields
2n—1

> |t|<%12|h| (12)
i=n-+1
Moreover, it follows by h; = fl (z;y;) that
hil < (1 +) |2y (13)

Inserting (11), (12) and (13) into (10), we have

2n—1
Z |t|<UZ|h|+% 1Z|h|— U+ Yo Zlhl
< (1+u) (u+%—1)2|xiyil- (14)
i=1

Here, it holds that

nu— (n—1)u? nu
1 - 1 < — 15
()t) = (L I < o)
Inserting (15) into (14) proves (8).
We next prove (9). As mentioned before, the vector (tn+1,tn+2, . .,tzn)T is

identical to the result of VecSum(h), so that t5, = fi (327, h;). By (1), w
have

n
lon — Z hz
i=1

It follows by (13) and (16) that

< Yoot Y |- (16)
i=1

n

> hi

=1

n
< (7)1 +w) D fziyil
i=1

Z [ziyil = (1 + 7 Z ERTIR

+ Yoot D Rl < (L +y01) Y [l

=1 =1

|t2n| S

I —nuj
which proves (9). O

Utilizing VecProduct and SumK, the authors (Ogita, Rump and Oishi)
developed the algorithm DotK, which calculates the dot product as in K-fold
precision.

Algorithm 2.11 (Ogita et al. [7]) Dot product 7y for z,y € F* as in K-
fold precision.
function res = DotK (z, y, K)
t = VecProduct(z, y)
res = SumK(t, K —1)

Condition number of the dot product z’y is defined by

|27]y
cond (xTy) =2 Tyl zTy # 0.

Then error bounds of the result res by DotK are given as follows [7]:

Theorem 2.12 (Ogita et al. [7]) Let res be the result obtained by DotK,
then

res — 2"y < (u+273,) |27yl + vk ol2" [y (17)

10

and

res —a'y| 1
T <u+ 295, 5+ 57{2_2 - cond (xTy) . (18)

Similarly to Theorem 2.6, Theorem 2.12 says

lres — 2Ty

~Y

K T
T u+ O(u") - cond (:c y) :

which means the result res by DotK is also computed in internally K-fold
working precision.

3 Parallel Algorithms

In this section, we will develop a parallel algorithm for calculating dot product
in K-fold precision. First, we will present an algorithm of parallelizing SumK,
which is named PSumK. Based on PSumK, we will present an algorithm of
parallelizing DotK, which is named PDotK.

Suppose the number of CPUs to be M > 2 on a shared memory system. Then
the CPUs are numbered as id from 1 to M, so 1 < i«d < M. Although we
presume that the shared memory system to be used for shortness’ sake, our
algorithm can also be applied to a distributed memory system.

3.1 Parallelizing Method of SumK (PSumK)

We first present an outline of PSumK which is a parallelized version of
SumK. Let p € F*.

Procedure 1: Distribute sub-vectors of p which are divided into M pieces to
all CPUs. Every CPU with 2 < id < M has ¢ := [n/M] com-
ponents. The CPU with id =1 has n — ¢ (M — 1) components.
Let p(id) denote the sub-vector on the id-th CPU. Let ¢;; denote
the number of components of p(), then it holds that

g <cp=c3=-=cy =CcC.

Procedure 2: Use SumL(p(?, K), whose output is denoted by ¢(**). Then
¢'") with K components is obtained on every CPU.

Procedure 3: Gather ¢\ for all id into a vector ¢ on the CPU with id = 1.
Then the length of the gathered vector ¢ becomes M K.

Procedure 4: Use SumK(q, K) on CPU with id = 1.

11

b6 P7 P8 P9 P10 P11 P12 P13 P14 P15

CPU-1

Fig. 5. Outline of PSumK for n =15, K =3 and M =3

An important point is that the output ¢"¥) with K components is necessary

using SumL in Procedure 2. Otherwise, it is not possible to achieve the result
with K-fold precision.

Next, we present here the concrete algorithm of PSumK.

Algorithm 3.1 (PSumK) A parallelized version of SumK.

function res = PSumK (p, K, M)
c=[1x], a=n—c(M-1)
% parallel private (index1, index?2)
if id ==
indexl =1:¢
else
index] =¢; +¢(id —2)+1:¢; 4+ ¢ (id — 1)
end
index2 =K (id —1)+1: K -id
¢ [index2] = SumL (p [index1], K)
% end parallel
res = SumK (¢, K)

Figure 5 illustrates an outline of PSumK for n = 15, K = 3 and M = 3.

Asin (3), s and S are defined by

S::Zpi, S::Z|pi|.
i=1 i=1

12

Then we present the following theorem for PSumK.

Theorem 3.2 Let res be the result obtained by Algorithm 3.1 (PSumK).
Suppose max{n,2(M K — 1)}u < 1. Then the following inequalities hold:

res — s < (u+ 373)5l + P (47) S (19)

and
|res — s

P <u+3vik_+ P ()cond (sz) : (20)

where

Py (%) o= (4 w4 393)7 + (14 Yaen) Wk

-0 (’yﬁax{c,l,z(MKfl)}) :

Proof. From the definition of vectors p, pt*¥), ¢ and ¢U'¥), we collect the fol-
lowing equalities:

n M c¢iq .
Zpi: Zngl)zs (21)
i id=1 i=1
Z]\4 Cid d
Z
pZ - pz -
ZI =X > = (22)
zd 1i= 1
Z q; = Z Z g (23)
id=1 k=1
2 ES > a2 (24)
id=1 k=1
Then
MK MK MK MK
res —s| =|res— Y ¢+ > qj —s| <|res—) q;| + —s|. (25)
j=1 j=1 Jj=1 =

Here, using res = SumK(q, K) and (4) yields

MK
K
+ Yo(mr 1) > lail
i=1

MK
+| |>+72MK 1) Z|% . (26)

MK
Z qi

=1

MK
< (11 + 3’)’12\41(—1) (

< (11 + 3712\/11(71)

MK
res — 3" g,
j=1

ZQZ_S

i=1

Inserting (26) into (25), we have

i — S

res —s| < u'ls| + (1 + Ya(mk 1) Z il (27)

13

where u’ := u + 373, ;. It follows by (21) and (23) that

MK M K M c¢iq M K . Cid)
Sa—sl= X =X < Y X a =X,
j=1 id=1k=1 id=1i=1 id=1 k=1 i=1
and using (6),
MK M TR
Z g —s| < Z <’Yg;—1 Z o D <yE,S. (28)
j=1 id=1 i=1

Furthermore, applying (7) to the right-hand side of (24) and using (22) yield

MK M K (id) M Cid (id)
> lal= >) < > ((1+72(cid—1>)2 pi D
=1 id=1 \j=1 id=1 i=1
< (1 +92(c-1))S- (29)
Inserting (28) and (29) into (27), we finally have
res — | < wls] + {(1+ w9y + (1 + %2 1) Wuk-n} S,
which proves (19) and divided by |s| also proves (20). O

Similarly to the error bound for SumK in Theorem 2.6, Theorem 3.2 says

lres — s

5] <u+Ou") - cond (sz) ,

which means the result res by PSumK is also computed in internally K-fold
working precision.

3.2 Parallelizing Method of DotK (PDotK)

Next, we present an outline of PDotK, which is a parallelized version of
DotK. Let z,y € F".

Procedure 1: Distribute sub-vectors of both x and y which are divided into
M pieces to all CPUs. Every CPU with 2 < id < M has ¢ :=
[n/M] components corresponding to x and y, respectively. The
CPU with id = 1 has n — ¢(M — 1) components as well. Let
204 and y(® denote the sub-vector on the id-th CPU. Let ¢;q
denote the number of components of p{*) then it holds that

c1<cg=c3=:--=c¢Cpy =C

14

Procedure 2: Use (i) = VecProduct (! y(i4)) on all CPUs, i.e. transform

dot product (z()Ty(into summation 2),

Procedure 3: Use SumL(¢t(¥) K —1), whose output is denoted by ¢'**). Then
¢ with K components is obtained on every CPU.

Procedure 4: Gather ¢\ for all id into a vector ¢ on the CPU with id = 1.
Then the length of the gathered vector ¢ becomes M K.

Procedure 5: Use SumK(g, K) on CPU with id = 1.

Now, we present here the concrete algorithm of PDotK.

Algorithm 3.3 (PDotK) A parallelized version of DotK.

function res = PDotK (z, y, K, M)
c=[4], a=n—c(M-1)
% parallel private (idx1, idx2, idx3, stl, st2, c;q)
if id ==
stl=1, st2=1
Cid = C1
else
stl=c;+c(id —2)+1, st2=2¢ +2c(id—2)+1

Cig = C

idxl =stl :stl+c¢jg — 1
idx2 = st2 : st2 + 2¢;g — 1, idx2s = st2 :st2 4+ 2¢;y — 2
idx3 = K (id —1)+1: K - id — 1
t [idx2] = VecProduct (z [idx1], y[idx1])
q [idx3] = SumlL (¢ [idx2s], K —1)
q(K -id) = t(st2 4+ 2¢ig — 1)
% end parallel
res = SumK (¢, K)

Then we present the following theorem for PDotK.

Theorem 3.4 Let res be the result obtained by Algorithm 3.3 (PDotK). Sup-

15

pose max{2n,2(MK — 1)}u < 1. Then the following inequalities hold:

res — ' y| < (W37 o)yl + P (vF) |27 |y (30)
| |
and .

% <u+3vyg o+ %PQ (’yK) cond (wTy) : (31)
where

P (’)’K) = (1+u+37x_1) e + (1+ 370)7§MK—1)

= O (Vax(ze-120K-1)}) -

Proof. From the definition of vectors 24 y(4) ¢(d) 4 and ¢(9, we collect

the following equalities:

id id
ax” = the,) (32)
2¢4q
id i i
>t = (aD)Ty) (33)
7=1
MK M K)
D= > 4 (34)
i=1 id=1j=1
MK M K (id)
IED ISR (35)
i=1 id=1j=1
Then
MK MK
‘res —xTy‘ = |res — qu + Zqi —:ETy
j=1 j=1
< il + Ir2] (36)
where
MK MK
ry :=res — Z g and 71y := Z q; — zly.
j=1 j=1

Here, using res = SumK(g, K) and (4) yields
MK
Z qi
i=1
MK

<’ (Jra] + [27y]) + Wk Zl ;1 (37)
p

MK
+ 72[§MK—1) > lail
i=1

|’I"1| S 'lll

where u’ := u + 373, ;. Inserting (37) into (36), we have

MK
res — 2"y| < ' [27y| + (1 + W) ra] + iy D sl (38)
j=1

16

By (32), (33) and (34), it holds that

o =
id=1 k=1 id=1
M | K (ia) M | K (id) 2¢i4 (id)
<Y g = @)Y =3 g =
id=1 k=1 id=1 k=1 j=1
M . . K- (ia) 2¢i0—1 (id)
=X (Q%)—téiﬁﬂZQ’ Z)
id=1 k=1
K-1 . 2¢,q—1 J
= Z ql(cz) Z tjz :)
id=1| k=1 j=1

and using (6) and (8) yields

(id) .
|7“2| < Z (’Ych 2 jz D < Z 'YQed 2'ch|)T||y(zd)|
j=1

id=1 1d=1
< Ygeur 2" [yl (39)

Furthermore, it follows by (32) and (35) that
M I
) > (| + X k)
k=1

id=1

+ Z ‘qkw

jgmj'_m 1(2‘
-2 (I

t2c id

Using (7), (8) and (9) yields

2cid_1
. »
Z|qj|< > (1+m G|y D] + (1 + Yagemn) 3 tﬂ)
id=1 i=1
M

< Z {1 + Yeuy + ’ycid(l + 74(Cid*1))}|(x(id))T| |y(zd)|
id=1
< (L4 37y)]=" |yl (40)

Here, 7. + ve(1 + 74.) < 37, is proved as follows: Since 2nu < 1 and M > 2,
deu < 1 and 7y < %, so that v. 4+ 7e(1 + y4c) < g% < 3.

Inserting (39) and (40) into (38), we finally have

‘res - fl?T?J‘ <u'lz’y| + {(1 +u)ype g + (1 + 376)7§MK—1)} "]y,

which proves (30), and divided by |2Ty| also proves (31). O

17

Again similarly to the error bound for DotK in Theorem 2.12, Theorem 3.4
says

res — 2"y K T
———— Su+0O(u") - cond (z"y),
|27y (")
which means the result res by PDotK is also computed in internally K-fold
working precision.

If c < nand MK < n, then the error bounds (19) and (31) become less
than (4) and (18), respectively. Moreover, note that PSumK and PDotK for
K = 2 can be specialized according to Sum2 and Dot2 in [7], respectively.
Then the error bounds (19) and (31) slightly change.

Thus, SumK and DotK are almost ideally parallelized as PSumK and
PDotK, respectively. In the next section, we will confirm the performance
of PDotK by numerical experiments.

4 Numerical Results

In this section, we present some results of numerical experiments showing the
performance of PDotK on our shared memory system. We use a PC with
2 processors of Intel Dual-Core Xeon 2.80GHz with 1024KB cache and Intel
C++ Compiler 9.0. Therefore, there are 4 CPUs in the shared memory system.

All floating-point operations are done in IEEE standard 754 double precision.
To avoid overdoing the compiler optimizations for TwoSum and TwoProd-
uct, a compiler option -mp has to be used, which ensures that floating-point
arithmetic conforms more closely to the IEEE standard. Parallelization is done
by OpenMP supported in the Intel Compiler.

To focus our mind on the parallel efficiency of PDotK, we compare the elapsed
time for PDotK only with that for DotK. More comparisons with other dot
product algorithms can be found in [7]. We specialize PDotK for K = 2
according to Dot2 in [7], so that the intermediate array ¢ in Algorithm 3.3 is
not necessary in case of K = 2.

Before testing PDotK, we evaluate the parallelization overhead by OpenMP
in use. To do this, we measure the parallel efficiency of a usual recursive
summation algorithm:

18

—6—n=10000

3.5 —&—n=100000
——n=1000000

Parallel Efficiency
N

1 2 3 4
Number of CPUs

Fig. 6. Parallel efficiency of recursive summation.

5s=0
% parallel for
fori=1:n

s =fl(s+pi)

end

for calculating 37, p;, p; € F with n = 10%, 10° and 10°. Here, the parallel
efficiency is defined by T)/T,,, where T,, means the elapsed time in case of
using np CPUs (1 < np < 4). We display the result in Figure 6.

From Figure 6, it can be seen that increasing the number of processors in use
need not to improve the parallel efficiency. The parallelization works well only
for the largest case (n = 10°). The reason is that the parallelization causes the
overhead for initialization, reduction handling and so forth (cf. for example,
see [3] for more details). For smaller n, the cost for the parallelization overhead
becomes relatively large compared with that for pure floating-point operations.
Therefore, if the floating-point operations are perfectly parallelized, then the
parallel efficiency R is determined by

T T
R:—:i,
T, C+Ti/np

where C' denotes the elapsed time for the parallelization overhead.
To generate extremely ill-conditioned data for testing dot product as examples,

we develop the following Matlab code.

19

Algorithm 4.1 Generator of extremely ill-conditioned vectors x,y for testing
dot product x*y.

function [x,y] = gendot2(n,cnd)
% Generate extremely ill-conditioned data for dot product.

% input

b n: n = length(x)

yA cnd: anticipated condition number of dot product
% output

yA X, y: generated vectors with length n

% MNote that the exact result of the dot product is cnd™-1.

m = floor(n/2);

Eps = 27-24;
L = floor(log(cnd)/-log(Eps));
if mod(n,2) ==

r = mod(1:m-2,L);

= randn(1,m-2) .*Eps."r;

= [1 ¢ 0.5%cnd”-1 -1 -c 0.5%cnd"-1]7;
randn(1,m-2);

=[1b11b1]’;

< o MK O
1}

else

= mod(1:m-1,L);

= randn(1,m-1) .*Eps."r;
= [1 c cnd™-1 -1 -c]’;
randn(1,m-1);
=[1Db11Db]’;

< o XM o H
1l

end
return

Using Algorithm 4.1, we generate two n-vectors = and y as follows: Let cnd :=
2190 ~ 2,58 -10'2°. Then L = 16. We treat the case where n is an odd number.
Generate pseudo-random vectors a, b € ™! whose components are uniformly
distributed in [—1,1]. Define r; := mod(i,16) for 1 < i < m — 1, i.e. 1; =
i—1i/16] - 16, and ¢; := a; - Eps". Then, we obtain

1 T
T = (1,01,02,...,cm_1,cnd ,—1,—01,—02,...,—cm_1) e
Yy = (1,b1,b2, .. -;bm—la]_, 1,b1,b2, .. .,bm_l)T &]Fn,

where n = 2m + 1. Clearly, the exact result of dot product =’y is equal to
cnd L.

Figures 7, 8 and 9 illustrate the parallel efficiency of PDotK compared with
DotK for n = 10001, 100001 and 1000001, respectively. For each n, we set
K =24.28.

20

w

[¢)]
~

1
[0e]

Parallel Efficiency
ST

=
[4)]
T

1 2 3 4
Number of CPUs

Fig. 7. Parallel efficiency of PDotK for n = 10, 001.

w

[¢)]
~

1
[0e]

Parallel Efficiency
ST

=
[4)]
T

1 2 3 4
Number of CPUs

Fig. 8. Parallel efficiency of PDotK for n = 100, 001.

From Figures 7, 8 and 9, we can observe the following things:

When the number of floating-point operations increases according to an
increase of n and/or K, the parallel efficiency is basically improved because
the parallelization overhead becomes relatively small.

In case of np = 2, PDotK achieves almost ideal parallel efficiency for all n,
even superlinear speedups for n = 10,001 (Fig. 7) due to the cache effects.
For large n, the cache effects seem to disappear.

In case of n = 1,000,001 (Fig. 9), the parallel efficiency for K = 2 is much
improved. This is due to an effect of the specialized PDotK for K = 2, espe-
cially the memory access time is reduced by getting rid of the intermediate

array.

21

—o—K=2
—A—K=4
35/ —«—K=8 3
3 3t
3
kS,
i 25
O
=
& 2
1.5¢
l Il Il
1 2 3 4

Number of CPUs

Fig. 9. Parallel efficiency of PDotK for n = 1,000, 001.

It turns out that the proposed algorithm PDotK is very effective for np = 2,
and meaningful for other cases, especially for larger n and K. The results with
K-fold precision are ensured by Theorem 3.4.

References

[1] D. E. Knuth: The Art of Computer Programming: Seminumerical Algorithms,
vol. 2, Addison-Wesley, Reading, Massachusetts, 1969.

[2] T. J. Dekker: A floating-point technique for extending the available precision,
Numer. Math., 18 (1971), 224-242.

[3] M. Gerndt, B. Mohr, J. L. Traff: Evaluating OpenMP performance analysis tools
with the APART test suite, Lecture Notes in Computer Science, 3149 (2004),

155-162.

[4] N. J. Higham: Accuracy and Stability of Numerical Algorithms, Second Edition,
SIAM, Philadelphia, 2002.

[5] W. Kahan: Doubled-precision IEEE standard 754 floating point arithmetic,
manuscript, 1987.

[6] X. Li et al.: Design, implementation and testing of extended and mixed precision
BLAS, ACM Trans. Math. Softw., 28 (2002), 152-205.

[7] T. Ogita, S. M. Rump, S. Oishi: Accurate sum and dot product, STAM J. Sci.
Comput., 26:6 (2005), 1955-1988.

22

